Math, asked by varadalalitha007, 8 months ago

Please tell me the answer ​

Attachments:

Answers

Answered by Blossomfairy
14

Question :

Solve -

1. \sf{ {2}^{ - 3}  \times  {2}^{ - 2} }

2. \sf{ {7}^{5}  \times  {7}^{ - 4}  \times  {7}^{ - 6} }

Answer :

The Law of Exponents we will use here is :-

 \star\boxed{\sf\purple{a {}^{ - n}  =  \frac{1}{ {a}^{n} }} }

1.

\implies\tt{ {2}^{ - 3}  \times  {2}^{ - 2} }

 \implies \tt{ \frac{1}{ {2}^{3} } \times  \frac{1}{ {2}^{2} }  }

\implies \tt{ \frac{1}{8}  \times  \frac{1}{4} }

\implies \tt{ \frac{1}{32} }  \orange\bigstar

2.

 \implies \tt{ {7}^{5}  \times  {7}^{ - 4}  \times  {7}^{ - 6} }

\implies \tt{16807 \times  \frac{1}{ {7}^{4} } \times  \frac{1}{ {7}^{6} }   }

\implies \tt{ \cancel{16807}   \times  \frac{1}{2401}  \times  \frac{1}{ \cancel{117649} {}^{ \:  \: 7}}}

\implies \tt{ \frac{1}{2401}  \times \frac {1}{7} }

\implies \tt{ \frac{1}{16807} } \:  \: or \:  \:  \frac{1}{ {7}^{5} }  \orange \bigstar

______________.....

Laws of Exponents :

  • \sf{ {a}^{m} \times  {a}^{n}  =  {a}^{m + n}  }

  • \sf{ \frac{ {a}^{m} }{ {a}^{n} }  = a {}^{m - n} }

  • \sf{( {a}^{m} ) {}^{n} = a {}^{mn}  }

  • \sf{ {a}^{m}  \times  {b}^{m}  =(ab) {}^{m}  }

  •  \sf{(ab) {}^{m}  =  {a}^{m} b {}^{m} }

  • \sf{ (\frac{a}{b} ) {}^{m}  =  \frac{a {}^{m} }{b {}^{m} } }

  •  \sf{a {}^{ - n}  =  \frac{1}{ {a}^{n} } }

  • \sf{ {a}^{ 0} = 1 }
Similar questions