Math, asked by boomeshboomesh05, 6 months ago

please tell me the answer​

Attachments:

Answers

Answered by Dynamicarmies
8

                                                                                                               

Given: triangles ABC and DEF such that B = E, C = F  and BC = EF.

 To prove:  ΔABC ≅  DEF

Proof:

Case I: If AB = DE then in

ΔABC and ΔDEF, AB = DE [by supposition] BC = EF [given] and B = E [given]

Thus, ΔABC ≅ ΔDEF [SAS criterion]

                                                                                                                             

Case II: If AB < DE Take a point G on ED such that EG = AB.

Join GF. In ABC and GEF, we have AB = GE [by supposition] BC = EF [given]  B = E [given] Thus, ABC GEF [SAS criterion]  

ACB = GFE [corresponding parts of congruent triangles are equal]

But ACB = DFE [given]  GFE =DFE,

This is only possible when FG coincides with FD or G coincides with D.  

AB must be equal to DE and hence, ΔABC ≅ ΔDEF (by SAS)

                                                                                                                             

Case III: If AB > ED

With a similar argument (as in case II), we may conclude that

Δ ABC ≅ ΔDEF (by SAS)

Thus,ΔABC ≅ ΔDEF.

                                                                                                                             

Answered by ankitsha80
0

Answer:

hii hello markk brainliest

Step-by-step explanation:

Similar questions