please tell me the answer of the question in the given photo.plz send the answer fast with the steps
Attachments:

Answers
Answered by
1
x= 1- root2
1/x = 1/1- root2 * 1+ root2/ 1+ root2
= 1 +root2/ (1)^2 - (root2) ^2
1+ root2 / 1 - 2
1 + root2/ -1
1/x = -(1 +root2)
x-1/x = 1-root2+1+root2
x-1/x =2
(x-1/x)^3 = (2)^3 =8 is the answer
1/x = 1/1- root2 * 1+ root2/ 1+ root2
= 1 +root2/ (1)^2 - (root2) ^2
1+ root2 / 1 - 2
1 + root2/ -1
1/x = -(1 +root2)
x-1/x = 1-root2+1+root2
x-1/x =2
(x-1/x)^3 = (2)^3 =8 is the answer
LIONELARYAN10:
thanks a lot man
Answered by
0
Hope u like my process
=====================


_-_-_-_-_-_-_-_-_-_-_-_-_-
Hope this is ur required answer
Proud to help you
=====================
_-_-_-_-_-_-_-_-_-_-_-_-_-
Hope this is ur required answer
Proud to help you
Similar questions