Math, asked by harshadashinde88, 5 months ago

please tell me the answer of this question ​

Attachments:

Answers

Answered by aashitatelang07
0

Answer:

angle D is 56°(alternate interior angle)

Answered by Anonymous
42

Given:

  • AB || CD
  • \angle DAB = 56°
  • \angle APC = 100°

Find:

  • \angle PCD
  • \angle CPD

Solution:

we, know that

\underline{\boxed{\sf\angle APC + \angle CPD =  {180}^{ \circ} }} \quad  \big\lgroup{\sf Linear \: Pair}  \big\rgroup

where,

  • \angle APC = 100°

So,

\sf \dashrightarrow\angle APC + \angle CPD =  {180}^{ \circ} \\  \\

\sf \dashrightarrow {100}^{ \circ}  + \angle CPD =  {180}^{ \circ} \\  \\

\sf \dashrightarrow\angle CPD =  {180}^{ \circ} - {100}^{ \circ}   \\  \\

\sf \dashrightarrow\angle CPD =  {80}^{ \circ}\\  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \small{ \therefore\underline{\sf \angle CPD =  {80}^{ \circ}}}

____________________________

\underline{\boxed{\sf \angle DAB = \angle ADC}} \quad  \big\lgroup{\sf Alternate \: Angles}  \big\rgroup

where,

  • \sf\angle DAB = 56°

So,

\sf  : \to\angle DAB = \angle ADC \\  \\

\sf  : \to {56}^{ \circ} = \angle ADC \\  \\

\sf  : \to \angle ADC = {56}^{ \circ}   \huge{......}1\\  \\

Now,

In PCD

\underline{\boxed{\sf\angle PDC  + \angle PCD  + \angle CPD = 180^{\circ}}} \quad  \big\lgroup{\sf Angle\: Sum \: Property} \big\rgroup

where,

  • \angle CPD = 80°
  • \angle ADC = \angle PDC = 56° [using eq.1]

So,

 \mapsto\sf\angle PDC  + \angle PCD  + \angle CPD = 180^{\circ} \\  \\

 \mapsto\sf 56^{\circ}  + \angle PCD  + 80^{\circ} = 180^{\circ} \\  \\

 \mapsto\sf \angle PCD  + 136^{\circ} = 180^{\circ} \\  \\

 \mapsto\sf \angle PCD = 180^{\circ} - 136^{\circ}   \\  \\

 \mapsto\sf \angle PCD = 44^{\circ}  \\  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \small{ \therefore\underline{\sf \angle PCD =  {44}^{ \circ}}}

Attachments:
Similar questions