Math, asked by jhaa86938, 5 months ago

please tell me the answer of this question in the image then I will mark you brainliest.​

Attachments:

Answers

Answered by aryan073
5

Question :

Q2) Find the value of X so that :

\large\rm{(1) 3^2 \times (-4)^2=(-12)^2x }

\large\rm{(2) \bigg(\dfrac{-3}{2}\bigg) ^6 \times \bigg(\dfrac{4}{9}\bigg)^3=\bigg(\dfrac{1}{2}\bigg)^3x}

   \rm(3)  \large\:  \bigg( { \frac{4}{5} } \bigg)^{ - 2}  \div  \bigg(  { \frac{ - 4}{5} } \bigg) =   {(1)}^{3x}

\rm \large \:  (4) \: \bigg(  { \frac{9}{4} } \bigg)^{3}  \times  \bigg(  { \frac{8}{9} } \bigg)^{3}  =  {2}^{6x}

 \rm \large \: (5) \:  \bigg( { \frac{15}{4} } \bigg)^{3}  \div  \bigg( { \frac{5}{4} } \bigg)^{3}  =  {3}^{x}

To find :

• The value of x=?

Solution :

  \bf \large \: (1)  \:  {3}^{2}  \times  {( - 4)}^{2}  =  {( - 12)}^{2x}

  \\ \implies \large \sf \:  {3}^{2}  \times  {( - 4)}^{  2}  =  {( - 12)}^{2x}

 \\  \implies \large \sf \:  \: 9 \times 16 =  {( - 12)}^{2x}

 \implies \large \sf \: 144 =  {( - 12)}^{2x}

  \\ \implies \large \sf \:  {12}^{2} =  { ( - 12)}^{2x}

 \\  \implies \underline{ \sf{subtracting \: both \: side \: by \: ( - ) \: sign}}

  \\ \implies \large \sf \:  { - 12}^{2}  =  - (  { - 12)}^{2x}

  \\ \:  \implies \bf{ \underline{lhs = rhs \: are \: equal \: so}}

  \\  \implies \large \sf \: 2x = 2

 \\  \:  \implies \large \sf \:  \cancel{2}x =  \cancel{2} \:   \:  \:  \:  \:  \:  \:  \:  \: \therefore\boxed{x = 1}

________________________________________

 \large \bf \: (2) \bigg( { \frac{ - 3}{2} } \bigg)^{6}  \times \bigg(  { \frac{4}{9} } \bigg)^{3}  =    \bigg({ \frac{1}{2} } \bigg)^{3x}

  \\ \implies \large \sf \:  \bigg( {  \frac{ - 3}{2} } \bigg)^{6}  \times  \bigg( { \frac{4}{9} } \bigg)^{3}  =  \:  \bigg( { \frac{1}{2} } \bigg)^{3x}

 \\  \implies \large \sf \bigg(  \frac{729}{64}  \bigg) \times  \bigg( \frac{64}{729}  \bigg) =  \bigg( { \frac{1}{2} } \bigg)^{3x}

 \\  \implies \large \sf \:  \bigg(  \cancel{\frac{729}{64} } \bigg) \times   \bigg( \cancel \frac{64}{729}  \bigg) =  \bigg( { \frac{1}{2} } \bigg)^{3x}

  \\ \implies \large \sf \: \: 1 =   \bigg({ \frac{1}{2} } \bigg)^{3x}

 \\  \:  \implies \large \sf \:  \bigg( { \frac{1}{2} } \bigg)^{0}  =  \bigg( { \frac{1}{2} } \bigg)^{3x}

 \:  \bf \large{ \underline{ since  \:  \:   \:  }  \:  \:  \:  \:  \:  \: {\:\boxed{ {a}^{0}  = 1}}}

  \\ \implies \large \sf \:  \:  0 = 3 x

 \\  \implies \large \sf{ \underline{since \:} \:   \:  \:  \:  \:  \:  \:  \:  \boxed{if \:  {a}^{m}  =  {a}^{n}  \: then \:  \: m = n}}

  \implies \large \sf \boxed{x = 0 \: }

_________________________________________

 \\  \bf \large \:(3)  \bigg( { \frac{4}{5} } \bigg)^{ - 2}  \div  \bigg( { \frac{ - 4}{5} } \bigg)^{ - 2}  =  {1}^{2x}

  \\ \implies \large \sf \:   \bigg( { \frac{4}{5} } \bigg)^{ - 2}  \div  \bigg( { \frac{ - 4}{5} } \bigg)^{ - 2}  =  {1}^{2x}

 \\  \implies \large \sf \bigg(  { \frac{ \frac{ 4}{5} }{ \frac{ - 4}{5} } } \bigg)^{ - 2 + 2} =  {1}^{2x}

 \\  \implies \large \sf \:  { - 1}^{0}  =  {1}^{2x}

 \\  \implies \large \sf \: 1 =  {1}^{2x}

 \\  \implies \large \sf \: 2x = 1

 \implies \large \boxed{ \underline{ \: x =  \frac{1}{2} }}

______________________________________

  \\ \bf \large \:  (4) \bigg({ \frac{9}{4} } \bigg)^{3}  \times  \bigg( { \frac{8}{9} } \bigg)^{3}  =  {2}^{6x}

  \\ \implies \large \sf \bigg( \frac{729}{64}  \bigg) \times  \bigg( \frac{512}{729}  \bigg) =  {2}^{6x}

  \\ \implies \large \sf \bigg( \frac{ \cancel{729}}{64}  \bigg) \times  \bigg( \frac{512}{ \cancel{729}}  \bigg) =  {2}^{6x}

 \\  \implies \large \sf \bigg(  \cancel\frac{512}{64} 8 \bigg) =  {2}^{6x}

 \\  \implies \large \sf \bigg( {2}^{3} \bigg) =  {2}^{6x}

  \\ \implies  \large\sf \: 3 = 6x

 \\  \implies \large \sf \:  \cancel3 =  \cancel6x

 \implies \large \boxed{ \underline{ \sf{x =  \frac{1}{2} }}}

_____________________________________

  \\ \large \bf \: (5) \:  \bigg(  { \frac{15}{4} } \bigg)^{3}  \div  \bigg( { \frac{5}{4} } \bigg)  ^{3}  =  {3}^{x}

 \\  \implies \large \sf \bigg( { \frac{15}{4} } \bigg)^{3}  \div   \bigg( { \frac{5}{4} } \bigg)^{3}  =  {3}^{x}

 \\  \implies \large \sf \bigg(  { \frac{ \frac{15}{4} }{ \frac{5}{4} } } \bigg)^{3 - 3}  =  {3}^{x}

 \\  \implies \large \sf \bigg(  { \frac{ \frac{ \cancel{15} \: 3}{ \cancel{4}} }{ \cancel{ \frac{5}{4} }} } \bigg)^{ 0}  =  {3}^{x}

 \\  \implies \large \sf \:  {3}^{0}  =  {3}^{x}

 \\  \implies \large \sf \: \: x = 0

 \implies \large \boxed { \underline{ \sf{ \: x =0}}}

________________________________________

\\ \red\huge\bigstar\boxed{\sf\color{red}{Additional \: information }}

Laws of Indices :

\\ \large\bf {(1) a^m . a^n= a^{m+n}}

\\ \large\bf{ (2) (a^m)^n=a^{mn}}

\\ \large\bf{(3) (ab)^m=a^m.a^n}

Similar questions