Science, asked by ItzMissNaincy, 2 months ago

please tell me the answer... please​

Attachments:

Answers

Answered by subhash2255
2

Answer:

that's the step by step explanation

Attachments:
Answered by Anonymous
3

Explanation:

\because \: x = 5 - 2 \sqrt{6}

 \therefore \:  \frac{1}{x}  =  \frac{1}{2 \sqrt{6} }

On rationalizing the denominator,

 \frac{1}{x}  =  \frac{1}{5 - 2 \sqrt{6} }  \times  \frac{5 + 2 \sqrt{6} }{5 + 2 \sqrt{6} }

 \frac{1}{x}  =  \frac{5 + 2 \sqrt{6} }{(5 - 2 \sqrt{6})(5 + 2 \sqrt{6} ) }

  \scriptsize\frac{1}{x}  =  \frac{5 + 2 \sqrt{6} }{( {5})^{2}- ( {2 \sqrt{6} })^{2}  }   \: [ \because \: (a + b)(a - b) =  {a}^{2}  -  {b}^{2}]

 \frac{1}{x}  =  \frac{5 + 2 \sqrt{6} }{25 - 4 \times 6}

 \frac{1}{x}  =  \frac{5 + 2 \sqrt{6} }{25 - 24}

 \frac{1}{x}  =  \frac{5 + 2 \sqrt{6} }{1}

 \scriptsize{so \:  \:  \: x +  \frac{1}{x}  = 5 - 2 \sqrt{6}  + 5 + 2 \sqrt{6} }

 = 5 + 5 - 2 \sqrt{6}  + 2 \sqrt{6}

 = 10

I hope it is helpful

Similar questions