Math, asked by karrivulavenkaiah31, 11 months ago

please tell me the answer
quickkkkk​

Attachments:

Answers

Answered by shadowsabers03
3

Since the total frequency of the distribution is 40,

\displaystyle\longrightarrow \sum f_i=40

\longrightarrow 6+f_1+10+f_2+9=40

\longrightarrow f_1+f_2+25=40

\longrightarrow f_1+f_2=15\quad\quad\dots(1)

The same frequency distribution table with the middle of each class is given below.

\begin{tabular}{|c|c|}\cline{1-2}$x_i$&$f_i$\\\cline{1-2}4&6\\\cline{1-2}12&$f_1$\\\cline{1-2}20&10\\\cline{1-2}28&$f_2$\\\cline{1-2}36&9\\\cline{1-2}\end{tabular}

Since mean of this distribution is 21.4,

\longrightarrow\bar x=\dfrac{\displaystyle\sum f_ix_i}{\displaystyle\sum f_i}

\longrightarrow 21.4=\dfrac{4\times6+12f_1+20\times10+28f_2+36\times9}{40}

\longrightarrow 24+12f_1+200+28f_2+324=21.4\times40

\longrightarrow 12f_1+28f_2+548=856

\longrightarrow 12f_1+28f_2=308

\longrightarrow 12f_1+12f_2+16f_2=308

\longrightarrow 12\left(f_1+f_2\right)+16f_2=308

From (1),

\longrightarrow 12\times15+16f_2=308

\longrightarrow 180+16f_2=308

\longrightarrow f_2=\dfrac{308-180}{16}

\longrightarrow\underline{\underline{f_2=8}}

And, from (1),

\longrightarrow f_1=15-f_2

\longrightarrow f_1=15-8

\longrightarrow\underline{\underline{f_1=7}}

Hence the frequencies are 7 and 8 respectively.

Similar questions