Math, asked by leena4619, 8 months ago

please tell me the solution ​

Attachments:

Answers

Answered by Anonymous
1

Step-by-step explanation:

 =  {x}^{2}  -  {y}^{2}  \\  \\  =  {( \frac{2 -  \sqrt{5} }{2 +  \sqrt{5} } )}^{2}  - {( \frac{2  +  \sqrt{5} }{2  -   \sqrt{5} } )}^{2} \\  \\  = ({\frac{2   +   \sqrt{5} }{2  -   \sqrt{5} } } + { \frac{2 -  \sqrt{5} }{2 +  \sqrt{5} } )}({ \frac{2  +  \sqrt{5} }{2  -   \sqrt{5} }} - { \frac{2 -  \sqrt{5} }{2 +  \sqrt{5} } )} \\  \\  = (\frac{ ({2 +  \sqrt{5}) }^{2} +  {(2 -  \sqrt{5} )}^{2}   }{ {2}^{2}  -  { (\sqrt{5}) }^{2} } ) \times  (\frac{ ({2 +  \sqrt{5}) }^{2}  -  {(2 -  \sqrt{5} )}^{2}   }{ {2}^{2}  -  { (\sqrt{5}) }^{2} } )  \\  \\  =  \frac{18}{4 - 5}  \times  \frac{8 \sqrt{5} }{4 - 5}  \\  \\  = 18  \times  8 \sqrt{5}  \\  \\  = 144 \sqrt{5}

Answered by rajdheerajcreddy
2

Answer is given in the pic.

Attachments:
Similar questions