Math, asked by malhotrasarthak2007, 1 month ago

please tell me the working.

Attachments:

Answers

Answered by BrainlyBAKA
4

Step-by-step explanation:

a = 2 + √3

 \frac{1}{a}  =  \frac{1}{2 +  \sqrt{3} }   \\  \\ =  \frac{2  -   \sqrt{3} }{ {2}^{2}  -  { \sqrt{3} }^{2} } \\  \\   =  \frac{2  - \sqrt{3} }{4 - 3}    \\ \\ = 2  -   \sqrt{3}  \\

 \bf \: a -  \cfrac{1}{a}  = 2 +  \sqrt{3}  - (2 -  \sqrt{3} )  \\  \\ \bf = 2 +  \sqrt{3}  - 2 +  \sqrt{3}  \\  \\  =  \bf \: 2 \sqrt{3}

Answered by FFdevansh
2

answer = 2 \sqrt{3}

step \: by \: step \: explaination

given \: that \\ a = 2 +  \sqrt{3} \\ then \:  \: value \: of  \\ a -  \frac{1}{a}  = 2 +  \sqrt{3}  -  \frac{ 1}{2 +  \sqrt{3} }  \\  = 2 \times  \sqrt{3}  -  \frac{1}{2  +  \sqrt{3}  }  \times  \\   \frac{ 2 -  \sqrt{3} }{2 -  \sqrt{3} }  \:  \: on \:  \: rationalize \\ 2 +  \sqrt{3}  -  \frac{(2 -  \sqrt{3}) }{4 - 3}  \\ 2 +  \sqrt{3}  - 2 +  \sqrt{3} \\ 2 \sqrt{3}

Similar questions