Math, asked by dishu52, 1 year ago

please tell me this answer

Attachments:

Answers

Answered by soykatsarkarrop9txp7
0

Answer:

the answer would be 1/sinθcosθ

Step-by-step explanation:

sec²θ =1/cos²θ

cosec²θ=1/sin²θ

  \sqrt{ \frac{1}{ { \cos( \alpha ) }^{2} } +    \frac{1}{ \sin( { \alpha }^{2} ) } }

Answered by ClassyRAJ
2

SOLUTION:

We have,

 \sqrt{ {sec}^{2} \theta +  {cosec}^{2} \theta }

Proof:

 \sqrt{ \frac{1}{ {cos}^{2}  \theta}  +  \frac{1}{ {sin}^{2}  \theta} }  \:  \:  \:  \:  \:  \:  \: [ {sec}^{2}  \theta =  \frac{1}{ {cos}^{2} \theta }  \: and \:  {cosec}^{2}  \theta =  \frac{1}{ {sin}^{2} \theta } ] \\  \\  =  >   \sqrt{ \frac{ {sin}^{2}  \theta +  {cos}^{2}  \theta}{ {cos}^{2} \theta {sin}^{2}   \theta} }  \\  \\  =  >   \sqrt{ \frac{1}{ {cos}^{2} \theta {sin}^{2}  \theta } }  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: [ {sin}^{2}  \theta +  {cos}^{2}  \theta = 1] \\  \\  =  >  \frac{1}{cos \theta sin \theta}  \\  \\  =  >  \frac{ {sin}^{2}  \theta +  {cos}^{2} \theta }{cos \theta sin \theta}  \\  \\  =  >  \frac{ {sin}^{2} \theta }{cos \theta sin \theta}  +  \frac{ {cos}^{2} }{cos \theta sin \theta} \\  \\  =  >  \frac{sin \theta}{cos \theta}  +  \frac{cos \theta}{sin \theta}  \\   \\  =  > tan \theta + cot \theta  \:  \:  \:  \:  \:  \:  \:  \: [proved]

Thus,

The answer is tan theta + cot theta.

Hope it helps ☺️

Similar questions