Math, asked by kusumlatatiwari, 1 year ago

please tell me this question

Attachments:

Answers

Answered by Anonymous
6
<b><font face=Copper black size=4 colour=purple><b><marquee direction = "up" > <h3> Given :

Ratio of radii = 2 : 3

So, \mathsf{{r_1} \ / \ {r_2}} = 2 / 3

Ratio of heights = 5 : 3

So, \mathsf{{h_1} \ / \ {h_2}} = 5 / 3

Now,

CSA of one cylinder = 2π\mathsf{r_1h_1}

CSA of another cylinder = 2π\mathsf{r_2h_2}

Their ratio :

= 2π\mathsf{r_1h_1} / 2π\mathsf{r_2h_2}

= \mathsf{{r_1h_1} \ / \ {r_2h_2}}

= \mathsf{({r_1} \ / \ {r_2})} / \mathsf{({h_1} \ / \ {h_2})}

= 2 / 3 × 5 / 3

= 10 / 9

= 10 : 9

^^"
Answered by siddhartharao77
3

Answer:

10 : 9

Step-by-step explanation:

Given Ratio of radii = 2:3.

Let the radii of two cylinders be r = 2x and R = 3x.

Given ratio of heights = 5 : 3.

Let the height of two cylinders be h = 5x and H = 3x.

Now,

(i)

Curved surface area of first cylinder = 2πrh

                                                            = 2π(2x)(5x)

                                                            = 20πx².



(ii)

Curved surface area of second cylinder = 2πRH

                                                                  = 2π(3x)(3x)

                                                                  = 18πx².



Ratio of their CSA = 20πx²/18πx²

                              = 10/9.


Therefore, Ratio of their curved surface areas = 10:9.


Hope it helps!

Similar questions