Math, asked by naman204544, 1 year ago

please tell me this question answer ​

Attachments:

Answers

Answered by pratyush4211
3

 \frac{ \sqrt{11 }   - \sqrt{7} }{ \sqrt{11}   +  \sqrt{7} }  = a + b \sqrt{77}

Rationalise The Denominator.

As we know

Rationalising Factor of (a+b)=(a-b)

√11+√7=√11-√7

Multiply The Numerator and Denominator With √11-√7

 \frac{ (\sqrt{11}  -  \sqrt{7} )( \sqrt{11}  -  \sqrt{7}) }{ (\sqrt{11} +  \sqrt{7})( \sqrt{11}  -  \sqrt{7}   )}  \\  \\ (x + y) {}^{2} =  {x}^{2}  +  {y}^{2}   + 2xy \\  \\( x + y) (x - y) =  {x}^{2} -  {y}^{2}  \\  \\  \frac{( \sqrt{11} +  \sqrt{7}) {}^{2}   }{ \sqrt{11}  {}^{2} -  \sqrt{7}  {}^{2}  }  \\  \\  \frac{ { \sqrt{11} {} }^{2}  +  \sqrt{7} {}^{2}  + 2 \times  \sqrt{11} \times  \sqrt{7}   }{11 - 7}  \\  \\  \frac{11 + 7 + 2 \sqrt{77} }{4}  = a + b \sqrt{77}  \\  \\  \frac{18 + 2 \sqrt{77} }{4}  = a + b \sqrt{77}  \\  \\  \frac{18}{4}  +  \frac{2}{4}  \times  \sqrt{77}  = a + b \sqrt{77}

By Comparing We get

a =  \frac{18}{4}  =  \frac{9}{2}  \\  \\ b =  \frac{2}{4}  =  \frac{1}{2}

So

 \huge{ \underline{a =  \frac{9}{2} }} \\  \\  \huge{ \underline{b =  \frac{1}{2} }}


pratyush4211: Is it right
Similar questions