Math, asked by jaiprakashmaan761, 2 months ago

Please tell me. Who will give correct answer I'll make him or her brainliest.​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given :-

\rm :\longmapsto\: {2}^{x} =  {5}^{y} =  {10}^{z}

To Prove :-

\rm :\longmapsto\:\dfrac{1}{x}  + \dfrac{1}{y}  = \dfrac{1}{z}

Identity Used :-

\rm :\longmapsto\:If \:  {x}^{y} = z \:  \implies \: x =  {\bigg(z\bigg) }^{\dfrac{1}{y} }

\rm :\longmapsto\: {a}^{m} \times  {a}^{n} =  {a}^{m + n}

\rm :\longmapsto\:If \:  {x}^{m}  =  {x}^{n}  \:  \implies \: m \:  =  \: n

Calculations :-

Given that

\rm :\longmapsto\: {2}^{x} =  {5}^{y} =  {10}^{z}

Let assume that

\rm :\longmapsto\: {2}^{x} =  {5}^{y} =  {10}^{z}= k

So,

\rm :\longmapsto\: {2}^{x} = k

\bf\implies \:2 =  {\bigg(k\bigg) }^{\dfrac{1}{x} } -  -  - (1)

Also,

\rm :\longmapsto\: {5}^{y} = k

\bf\implies \:5 =  {\bigg(k\bigg) }^{\dfrac{1}{y} } -  -  - (2)

Also,

\rm :\longmapsto\: {10}^{z} = k

\bf\implies \:10 =  {\bigg(k\bigg) }^{\dfrac{1}{z} }

\bf\implies \:2 \times 5 =  {\bigg(k\bigg) }^{\dfrac{1}{z} }

On substituting the values of 2 and 5, we get

\rm :\longmapsto\: {\bigg(k\bigg) }^{\dfrac{1}{x} } \times  {\bigg(k\bigg) }^{\dfrac{1}{y} } =  {\bigg(k\bigg) }^{\dfrac{1}{z} }

\rm :\longmapsto\: {\bigg(k\bigg) }^{\dfrac{1}{x}  +  \dfrac{1}{y} } =  {\bigg(k\bigg) }^{\dfrac{1}{z} }

\bf :\longmapsto\:\dfrac{1}{x}  + \dfrac{1}{y}  = \dfrac{1}{z}

Hence, Proved

Additional Information :-

\rm :\longmapsto\: {x}^{0} = 1

\rm :\longmapsto\: {x}^{ - n} =  \dfrac{1}{ {x}^{n} }

\rm :\longmapsto\: {a}^{m}  \div  {a}^{n} =  {a}^{m  -  n}

\rm :\longmapsto\: {( {a}^{m} )}^{n} =  {a}^{mn}

Answered by Anonymous
2

2^x=5^ʏ=10^ᴢ

1/x+1/ʏ=1/ᴢ

ʜᴇɴᴄᴇ ᴘʀᴏᴠᴇᴅ...

Step-by-step explanation:

(◕ᴗ◕) ᎻϴᏢᎬ ᎷᎽ ᎪΝՏᏔᎬᎡ ᏆՏ ᎻᎬᏞᏢҒႮᏞ ҒϴᎡ ᎽϴႮ(◕ᴗ◕)

Attachments:
Similar questions