Math, asked by manjumourya0001, 5 months ago

please tell me with solution ​

Attachments:

Answers

Answered by Anonymous
1

Step-by-step explanation:

I think this answers are helpful for you

Attachments:
Answered by Anonymous
9

प्रश्न:-

1) यदि \sf{a+\dfrac{1}{a} = \dfrac{8}{3}} तो \sf{a^2+\dfrac{1}{a^2} = ?}

2) यदि \sf{x+\dfrac{1}{x} = \dfrac{4}{5}} तो \sf{x^2+\dfrac{1}{x^2} = ?}

3) यदि \sf{a+\dfrac{1}{a} = \dfrac{7}{3}} तो \sf{a^2 + \dfrac{1}{x^2} = ?}

4) यदि \sf{x+\dfrac{1}{x} = 20} तो \sf{x^2 + \dfrac{1}{x^2} = ?}

5) यदि \sf{y + \dfrac{1}{y} = \dfrac{8}{5}} तो \sf{y^2 + \dfrac{1}{y^2} = ?}

______________________________________

हल:-

1) प्रश्न में दिया हुआ:-

\sf{a + \dfrac{1}{a} = \dfrac{8}{3}}

आवश्यकता:-

\sf{a^2+\dfrac{1}{a^2}} का मूल।

हल:-

\sf{a+\dfrac{1}{a} = \dfrac{8}{3}}

बराबर के दोनों बगल वर्ग करते हुए,

\sf{\bigg(a +\dfrac{1}{a}\bigg)^2 = \bigg(\dfrac{8}{3}\bigg)^2}

= \sf{a^2 + 2\times a\times \dfrac{1}{a} + \dfrac{1}{a^2} = \dfrac{64}{9}}

= \sf{a^2 + 2 + \dfrac{1}{a^2} = \dfrac{64}{9} }

= \sf{a^2 + \dfrac{1}{a^2} = \dfrac{64}{9} - 2}

= \sf{a^2 + \dfrac{1}{a^2} = \dfrac{64-18}{9}}

= \sf{a^2 + \dfrac{1}{a^2} = \dfrac{46}{9}}

\sf{\therefore a^2 +\dfrac{1}{a^2}} का मूल है \sf{\dfrac{46}{9}}

______________________________________

2) प्रश्न में दिया हुआ:-

\sf{x+\dfrac{1}{x} = \dfrac{4}{5}}

आवश्यकता:-

\sf{x^2 + \dfrac{1}{x^2}} का मूल।

हल:-

\sf{x+\dfrac{1}{x} = \dfrac{4}{5}}

बराबर के दोनों बगल वर्ग करते हुए,

\sf{\bigg(x+\dfrac{1}{x}\bigg)^2 = \bigg(\dfrac{4}{5}\bigg)^2}

= \sf{x^2 + 2\times x \times \dfrac{1}{x} + \dfrac{1}{x^2} = \dfrac{16}{25}}

= \sf{x^2 + 2 + \dfrac{1}{x^2} = \dfrac{16}{25}}

= \sf{x^2 + \dfrac{1}{x^2} = \dfrac{16}{25} - 2}

= \sf{x^2 + \dfrac{1}{x^2} = \dfrac{16-50}{25}}

= \sf{x^2 + \dfrac{1}{x^2} = \dfrac{-34}{25}}

\sf{\therefore x^2+\dfrac{1}{x^2}} का मूल है \sf{\dfrac{-34}{25}}

______________________________________

3) प्रश्न में दिया हुआ:-

\sf{a+\dfrac{1}{a} = \dfrac{7}{3}}

आवश्यकता:-

\sf{a^2+\dfrac{1}{a^2}} का मूल।

हल:-

\sf{a+\dfrac{1}{a} = \dfrac{7}{3}}

बराबर के दोनों बगल वर्ग करते हुए,

\sf{\bigg(a+\dfrac{1}{a}\bigg)^2 = \bigg(\dfrac{7}{3}\bigg)^2}

= \sf{a^2 + 2\times a\times \dfrac{1}{a} + \dfrac{1}{a^2} = \dfrac{49}{3}}

= \sf{a^2 + 2+ \dfrac{1}{a^2} = \dfrac{49}{9}}

= \sf{a^2 + \dfrac{1}{a^2} = \dfrac{49}{9} - 2}

= \sf{a^2 + \dfrac{1}{a^2} = \dfrac{49-18}{9}}

= \sf{a^2 + \dfrac{1}{a^2} = \dfrac{31}{9}}

\sf{\therefore a^2 + \dfrac{1}{a^2}} का मूल है \sf{\dfrac{31}{9}}

______________________________________

4) प्रश्न में दिया हुआ:-

\sf{x+\dfrac{1}{x} = 20}

आवश्यकता:-

\sf{x^2 + \dfrac{1}{x^2}} का मूल।

हल:-

\sf{x+\dfrac{1}{x} = 20}

बराबर के दोनों बगल वर्ग करते हुए,

\sf{\bigg(x+\dfrac{1}{x}\bigg)^2 = (20)^2}

= \sf{x^2 + 2\times x \times \dfrac{1}{x} + \dfrac{1}{x^2} = 400}

= \sf{x^2 + 2 + \dfrac{1}{x^2} = 400}

= \sf{x^2 + \dfrac{1}{x^2} = 400-2}

= \sf{x^2 + \dfrac{1}{x^2} = 398}

\sf{\therefore x^2+\dfrac{1}{x^2}} का मूल है 398.

______________________________________

5) प्रश्न में दिया हुआ:-

\sf{y + \dfrac{1}{y} = \dfrac{8}{5}}

आवश्यकता:-

\sf{y^2 + \dfrac{1}{y^2}} का मूल।

हल:-

\sf{y + \dfrac{1}{y} = \dfrac{8}{5}}

बराबर के दोनों बगल वर्ग करते हुए,

\sf{\bigg(y+\dfrac{1}{y}\bigg)^2 = \bigg(\dfrac{8}{5}\bigg)^2}

= \sf{y^2 + 2\times y \times \dfrac{1}{y} + \dfrac{1}{y^2} = \dfrac{64}{25}}

= \sf{y^2 + 2 + \dfrac{1}{y^2} = \dfrac{64}{25}}

= \sf{y^2 + \dfrac{1}{y^2} = \dfrac{64}{25} - 2}

= \sf{y^2 + \dfrac{1}{y^2} = \dfrac{64-50}{25}}

= \sf{y^2 + \dfrac{1}{y^2} = \dfrac{14}{25}}

\sf{\therefore y^2 + \dfrac{1}{y^2}} का मूल है \sf{\dfrac{14}{25}}

______________________________________


pandaXop: Excellent ☃️
Cynefin: Awesome :D
Similar questions