Math, asked by Anonymous, 1 year ago

Please tell question number 4 part 1...

Attachments:

Answers

Answered by Anonymous
2
Answer :



  l.h.s \:  =  > \\  \\  \frac{1}{1 +  {x}^{a - b} }  +  \frac{1}{1 +  {x}^{b - a} }    \\  \\ write \: all \: numerators \: above \: l.c.m \\  \\  \frac{1 +  {x}^{b - a} + 1 + x {}^{a - b}  }{(1 +  {x}^{a - b} )(1 +  {x}^{b - a}) }  \\  \\  \frac{2 +  {x}^{b - a}  +  {x}^{a - b} }{1 +  {x}^{b - a}  +  {x}^{a - b}  + 1}  \\  \\  \frac{2 +  {x}^{b - a}  +  {x}^{a - b} }{2 +  {x}^{b - a}  +  {x}^{a - b} }  \\  \\ any \: expression \: divided \: by \: itself \: equals \: to \: 1 \\  \\  =  >  \: 1 \\  \\ l.h.s = r.h.s \\  \\ hence \: proven.



HOPE IT WOULD HELP YOU
Similar questions