Math, asked by Mayank3000, 1 year ago

Please tell step by step solution ​

Attachments:

Answers

Answered by sb93
1

Answer:

{\Large\frac{5}{4}}

Step-by-step explanation:

\implies  (x+{\Large\frac{1}{x}})^2=x^2+{\Large\frac{1}{x^2}}+2

\implies  (x+{\Large\frac{1}{x}})^2={\Large\frac{17}{4}}+2

\implies (x+{\Large\frac{1}{x}})^2={\Large\frac{17+8}{4}}

\implies (x+{\Large\frac{1}{x}})=\sqrt{\Large\frac{25}{4}}

\implies \boxed{(x+{\frac{1}{x}})={\frac{5}{4}}}

\implies  (x-{\Large\frac{1}{x}})^2=x^2+{\Large\frac{1}{x^2}}-2

\implies  (x-{\Large\frac{1}{x}})^2={\Large\frac{17}{4}}-2

\implies (x-{\Large\frac{1}{x}})^2={\Large\frac{17-8}{4}}

\implies (x-{\Large\frac{1}{x}})=\sqrt{\Large\frac{9}{4}}

\implies \boxed{(x-{\frac{1}{x}})={\frac{3}{4}}}

Now, substitute in the given equation :

\implies {\Large\frac{2}{5}}(x+{\Large\frac{1}{x}})+(x-{\Large\frac{1}{x}})

\implies {\Large\frac{2}{5}}({\Large\frac{5}{4}})+({\Large\frac{3}{4}})

\implies {\Large\frac{10}{20}}+{\Large\frac{3}{4}}

\implies {\Large\frac{10+15}{20}}

\implies \boxed{\Large\frac{5}{4}}

_______________________________________

<b><i><marquee> Mark as Brainliest :)

Answered by adarshbsp903
0

Answer:

hope it helps you mark it as brainliest see the attachment

Attachments:
Similar questions