Math, asked by AJTECHYBRO, 2 months ago

please tell that very important



find the zeros of 7x^2+ 49x verify the relationship between zeroes and coefficients​

Answers

Answered by ngitauma
2

Answer:

Correct option is

Correct option isB

Correct option isB7

Correct option isB79

Correct option isB79

Correct option isB79 ,

Correct option isB79 , 7

Correct option isB79 , 7−9

Correct option isB79 , 7−9

Correct option isB79 , 7−9

Correct option isB79 , 7−9 49x

Correct option isB79 , 7−9 49x 2

Correct option isB79 , 7−9 49x 2 −81

Correct option isB79 , 7−9 49x 2 −81=(7x)

Correct option isB79 , 7−9 49x 2 −81=(7x) 2

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9)

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=−

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 7

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79 , x=

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79 , x= 7

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79 , x= 79

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79 , x= 79

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79 , x= 79

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79 , x= 79 The zeros of the polynomials are −

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79 , x= 79 The zeros of the polynomials are − 7

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79 , x= 79 The zeros of the polynomials are − 79

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79 , x= 79 The zeros of the polynomials are − 79

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79 , x= 79 The zeros of the polynomials are − 79 ,

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79 , x= 79 The zeros of the polynomials are − 79 , 7

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79 , x= 79 The zeros of the polynomials are − 79 , 79

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79 , x= 79 The zeros of the polynomials are − 79 , 79

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79 , x= 79 The zeros of the polynomials are − 79 , 79

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79 , x= 79 The zeros of the polynomials are − 79 , 79 Relationship between the zeros and the coefficients of the polynomials-

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79 , x= 79 The zeros of the polynomials are − 79 , 79 Relationship between the zeros and the coefficients of the polynomials-Sum of the zeros=-

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79 , x= 79 The zeros of the polynomials are − 79 , 79 Relationship between the zeros and the coefficients of the polynomials-Sum of the zeros=- coefficient of x

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79 , x= 79 The zeros of the polynomials are − 79 , 79 Relationship between the zeros and the coefficients of the polynomials-Sum of the zeros=- coefficient of x 2

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79 , x= 79 The zeros of the polynomials are − 79 , 79 Relationship between the zeros and the coefficients of the polynomials-Sum of the zeros=- coefficient of x 2

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79 , x= 79 The zeros of the polynomials are − 79 , 79 Relationship between the zeros and the coefficients of the polynomials-Sum of the zeros=- coefficient of x 2 coefficient of x

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79 , x= 79 The zeros of the polynomials are − 79 , 79 Relationship between the zeros and the coefficients of the polynomials-Sum of the zeros=- coefficient of x 2 coefficient of x

Correct option isB79 , 7−9 49x 2 −81=(7x) 2 −(9) 2 =(7x+9)(7x−9)x=− 79 , x= 79 The zeros of the polynomials are − 79 , 79 Relationship between the zeros and the coefficients of the polynomials-Sum of the zeros=- coefficient of x 2 coefficient of x =−( 49/0)=0

0)=0Also sum of zeros=−

0)=0Also sum of zeros=− 7/9 + 7/9

9

9 =

9 = 7/−9+9

−9+9

−9+9 =0

−9+9 =0 Product of the zeros =

−9+9 =0 Product of the zeros = coefficient of x

−9+9 =0 Product of the zeros = coefficient of x 2

−9+9 =0 Product of the zeros = coefficient of x 2

−9+9 =0 Product of the zeros = coefficient of x 2 constant term

−9+9 =0 Product of the zeros = coefficient of x 2 constant term

−9+9 =0 Product of the zeros = coefficient of x 2 constant term =

−9+9 =0 Product of the zeros = coefficient of x 2 constant term = 49/−81

−81

−81

−81 Also the product of the zeros=−

−81 Also the product of the zeros=− 7/9

9

9 ×

9 × 7/9

9

9 =

9 = 49/−81

−81

−81

−81 Hence verified.

Similar questions