Math, asked by 02Muskan, 10 months ago

please tell the answer​

Attachments:

Answers

Answered by niishaa
0

By Linear pair equation,

(3α +10)+(2α-30)= 180°

3α + 10° + 2α - 30° = 180°

5α -20° = 180°

5α = 180°+20°

5α = 200°

α = 200°/5

α = 40°

\huge\boxed{\fcolorbox{black}{</strong><strong>yell</strong><strong>ow</strong><strong>}{</strong><strong>α = 40°</strong><strong>}}

therefore,

\boxed{\fcolorbox{black}{yellow}{</strong><strong>4α = 4×40° = 160°</strong><strong>}}

\boxed{\fcolorbox{black}{yellow}{</strong><strong>(</strong><strong>3</strong><strong>α</strong><strong>+</strong><strong>1</strong><strong>0</strong><strong>)</strong><strong>=</strong><strong> </strong><strong>3</strong><strong>×</strong><strong>4</strong><strong>0</strong><strong>+</strong><strong>1</strong><strong>0</strong><strong>=</strong><strong> </strong><strong>1</strong><strong>2</strong><strong>0</strong><strong>+</strong><strong>1</strong><strong>0</strong><strong>=</strong><strong> </strong><strong>1</strong><strong>3</strong><strong>0</strong><strong>°</strong><strong> }}

\boxed{\fcolorbox{black}{yellow}{(2α-30)= 2×40-30= 80-30= 50° }}

Step-by-step explanation:

hope it helps you &lt;svg width="10" height="10" viewBox="0 0 100 100"&gt;\ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ &lt;path fill="Black" d="M92.71,7.27L92.71,7.27c-9.71-9.69-25.46-9.69-35.18,0L50,14.79l-7.54-7.52C32.75-2.42,17-2.42,7.29,7.27v0 c-9.71,9.69-9.71,25.41,0,35.1L50,85l42.71-42.63C102.43,32.68,102.43,16.96,92.71,7.27z"&gt;&lt;/path&gt;\ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ &lt;animateTransform \ \textless \ br /\ \textgreater \ attributeName="transform" \ \textless \ br /\ \textgreater \ type="scale" \ \textless \ br /\ \textgreater \ values="1; 1.5; 1.25; 1.5; 1.5; 1;" \ \textless \ br /\ \textgreater \ dur="1s" \ \textless \ br /\ \textgreater \ repeatCount="40000"&gt; \ \textless \ br /\ \textgreater \ &lt;/animateTransform&gt;\ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ &lt;/svg&gt;

Answered by priyanka9565
0

Answer:

This is your answer

Hope this answer helped you out!!!

Plz mark my answer as brainliest...

Attachments:
Similar questions