Math, asked by singhpardhan0044, 2 months ago

please tell the answer​

Attachments:

Answers

Answered by michaelgimmy
7

Question :-

The Value of \Big [\Big (\dfrac{1}{4}\Big )^{-2} + \Big (\dfrac{1}{3}\Big )^{-2} \Big ] \div \Big (\dfrac{1}{5}\Big )^{-2}is

\begin {gathered} \end {gathered}

Solution :-

\begin {aligned} & \bold {\Big [\Big (\dfrac{1}{4}\Big )^{-2} + \Big (\dfrac{1}{3}\Big )^{-2} \Big ] \div \Big (\dfrac{1}{5}\Big )^{-2}} \Rightarrow \Big [\Big (\dfrac{4}{1}\Big )^{2} + \Big (\dfrac{3}{1}\Big )^{2} \Big ] \div \Big (\dfrac{5}{1}\Big )^{2}\\\\\\& \Rightarrow \Big [(4)^{2} + (3)^{2} \Big ] \div (5)^{2} = \dfrac{(4)^{2} + (3)^{2}}{(5)^{2}}\\\\\\& \Rightarrow \dfrac{(16 + 9)}{25} \Rightarrow \dfrac{25}{25} = \bold 1 \end {aligned}

\begin {gathered} \end {gathered}

Laws Used :-

i. a^{-m} = \dfrac{1}{a^m}

\begin {gathered} \end {gathered}

Additional Information :-

Some more Laws of Exponents :

i. a^m \times a^n = a^{m + n}

ii. \dfrac{a^m}{a^n} = a^{m - n}

iii. (a^m)^n = a^{m \times n}

iv. a^m \times b^m = (a \times b)^m

v. \Big (\dfrac{a}{b}\Big )^m = \dfrac{a^m}{b^m}

vi. a^0 = 1

Answered by mathdude500
1

\large\underline\purple{\bold{Solution :-  }}

 \tt \: \bigg[   {\bigg( \dfrac{1}{4} \bigg)^{ - 2} \:  + \bigg( \dfrac{1}{3} \bigg)}^{ - 2} \bigg] \div \bigg( \dfrac{1}{5} \bigg)^{ - 2}

\tt\implies \:\bigg[  {(4)}^{2}  +  {(3)}^{2} \bigg] \div  {(5)}^{2}

\tt\implies \:  \bigg[ 16 + 9\bigg] \div  {(5)}^{2}

\tt\implies \:25 \div  {(5)}^{2}

\tt\implies \:25 \times \dfrac{1}{25}

\tt\implies \:1

\large \red{\bf \:  ⟼ Explore  \: more }

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{a^m\times{a^n}\:=\:a^{m\:+\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\purple{\dfrac{a^m}{a^n}\:=\:a^{m\:-\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\orange{\dfrac{1}{x^n}\:=\:x^{-n}\:}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\color{peru}{(a^m)^n\:=\:a^{m\times{n}}\:}}}}} \\ \end{gathered}

\begin{gathered}(5)\:{\underline{\boxed{\bf{\red{ {x}^{0} = 1}}}}} \\ \end{gathered}

Similar questions