Math, asked by agnimeet1, 1 year ago

please tell the answer​

Attachments:

Answers

Answered by Anonymous
4

Given, \sf {a}  =  {2 +  \sqrt{3} }

\sf {\frac{1}{a}  =  \frac{1}{2 +  \sqrt{3} }}

\sf {Rationalise\:the\: denominator}

\sf{ \frac{1}{a}  =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} } }

\sf{ \frac{1}{a}  =  \frac{2 -  \sqrt{3} }{ {2}^{2}  -   {( \sqrt{3})}^{2}  }}

\sf{ \frac{1}{a}  =  \frac{2 -  \sqrt{3} }{ 4  - 3  }}

\sf{ \frac{1}{a}  =  \frac{2 -  \sqrt{3} }{1}}

\sf{ \frac{1}{a}  =  {2 -  \sqrt{3} }}

\sf{  a  +  \frac{1}{ a} } = 2 +  \sqrt{3}  + 2 -  \sqrt{3}

\sf{  a  +  \frac{1}{ a} } = 4

\sf{cubing\:on\:both\:sides,}

\sf{{(a  +  \frac{1}{ a} })}^{3}  =  {4}^{3}

 \sf{ {a}^{3}  +  \frac{1}{ {a}^{3} } + 3(a +  \frac{1}{a} )  = 64}

\sf{ {a}^{3}  +  \frac{1}{ {a}^{3} } + 3(4 )  = 64}

\sf{ {a}^{3}  +  \frac{1}{ {a}^{3} } + 12  = 64}

\sf{ {a}^{3}  +  \frac{1}{ {a}^{3} } = 64 - 12}

 \fbox{\sf{ {a}^{3}  +  \frac{1}{ {a}^{3} } = 54}}

Similar questions