Math, asked by raj136kumarnirala, 9 months ago

please tell the answer fast​

Attachments:

Answers

Answered by veenasakhare100
0

Answer:

answer - a=-31 and b= 24\sqrt{5}

Step-by-step explanation:

FIND ATTACHMENT HERE OF YOUR ANSWER

Attachments:
Answered by ankushsaini23
2

Answer:

 given =  \: \frac{4 +  \sqrt[3]{5} }{4 -  \sqrt[3]{5} }  = a +  \sqrt[b]{5}

To prove= value of a and b

 \frac{4 +  \sqrt[3]{5} }{4 -  \sqrt[3]{5} }  \times  \frac{4 +  \sqrt[3]{5} }{4 +  \sqrt[3]{5} }  = a +  \sqrt[b]{5}

 =  \frac{( {4 +  \sqrt[3]{5}) }^{2} }{( {4})^{2} - ( { \sqrt[3]{5} })^{2}  }  = a +  \sqrt[b]{5}

 =  \frac{( {4})^{2} + ( { \sqrt[3]{5} })^{2} + 2(4)( \sqrt[3]{5})   }{16 - 45}  = a +  \sqrt[b]{5}

 \frac{16 + 45 +  \sqrt[24]{5} }{ - 29}  = a +  \sqrt[b]{5}

 \frac{61 +  \sqrt[24]{5} }{ - 29}  = a +  \sqrt[b]{5}

so \: a =  \frac{61}{ - 29}  \: and \: b =  \frac{24}{ - 29}

  • hope it helps you...
  • please mark it as a brainlist answer....
  • also please rate thanks and follow me....
  • stay home STAY SAFE....
Similar questions