Math, asked by mohantha16, 3 months ago

please tell the answer fast​

Attachments:

Answers

Answered by vaishubh1707
7

Answer:

Step-by-step explanation:

  =  {( \frac{ {x}^{a} }{ {x}^{ - b} })}^{a  - b}   \times {( \frac{ {x}^{b} }{ {x}^{ - c} })}^{b - c}  \times {( \frac{ {x}^{c} }{ {x}^{ - a} })}^{c  - a}  \\by  \: using \: identity \:  \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}    \\ = ( { {x}^{a + b} )}^{a - b}  \times ( { {x}^{b+ c} )}^{b - c}  \times ( { {x}^{c + a } )}^{c - a}

By using formula,

 ({ {a}^{m} })^{n}  =  {a}^{m \times n}

(a - b)(a + b) =  {a}^{2}  -  {b}^{2}

 =  {x}^{ ({a}^{2}  - {b}^{2} ) }   \times {x}^{ ({b}^{2}  - {c}^{2} ) }  \times {x}^{ ({c}^{2}  - {a}^{2} ) }

by using Identity,

 { a }^{m} \times  {a}^{n}  =  {a}^{m +n}

 = {x}^{ ({a}^{2}  - {b}^{2} +  {b}^{2}  -  {c}^{2} +  {c}^{2}  -  {a}^{2}   )} \\  =  {x}^{0}  \\  = 1

 {a}^{0}  = 1

 Hence \: Shown

Similar questions