Math, asked by samyao7, 1 month ago

please tell the answer fast​

Attachments:

Answers

Answered by ahmedseum
0

Answer:

proved

Step-by-step explanation:

if you still have problem with my answer then text me

Attachments:
Answered by 12thpáìn
4

Prove

  •    \sf\dfrac{ {2}^{30} +  {2}^{29}  +  {2}^{28}  }{ {2}^{31} +  {2}^{30}  -  {2}^{29}  }  =  \dfrac{7}{10}

Solutions

{~~~~~~:~~~\implies\sf\dfrac{ {2}^{30} +  {2}^{29}  +  {2}^{28}  }{ {2}^{31} +  {2}^{30}  -  {2}^{29}  }  =  \dfrac{7}{10} }\\

  • Taking 2²⁸ Common

\\{~~~~~~:~~~\implies\sf\dfrac{  {2}^{28}( {2}^{2} +  {2}^{1}  +  {2}^{0}  )}{  {2}^{28} ({2}^{3} +  {2}^{2}  -  {2}^{1})  }  =  \dfrac{7}{10} }\\

\\{~~~~~~:~~~\implies\sf\dfrac{   \cancel{{2}^{28}}( 4 +  2  +  1  )}{   \cancel{{2}^{28} }(8 +  4 -  2)  }  =  \dfrac{7}{10} }\\

\\{~~~~~~:~~~\implies\sf\dfrac{   1 \times   7}{  1(12 - 2)  }  =  \dfrac{7}{10} }\\

\\{~~~~~~:~~~\implies\sf\dfrac{  7}{  10}  =  \dfrac{7}{10} } \:  \:  \: _{_{_{_{_{_{ \pink{proved}}}}}}}\\\\

  • \begin{gathered}\begin{gathered}\\\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \bigstar \: \underline{\bf{\blue{~~~~~~~~~Don't~ Study~ More~~~~~~~~~~~\bigstar}}}\\ {\boxed{\begin{array}{cc} \sf \bigstar{a}^{m} \times {a}^{n} = {a}^{m + n}  \\ \\  \sf \bigstar{a}^{m} \div {a}^{n} = {a}^{m - n}  \\ \\ \sf{\bigstar( {a}^{m} ) ^{n} = {a}^{mn} }  \\  \\  {\bigstar\sf a {}^{m} \times {n}^{m} = (ab) ^{m} } \ \\\\  \ \sf\bigstar{a}^{0} = 1   \\  \\  \sf \bigstar \: {\dfrac{ {a}^{m} }{ {b}^{m} }= \left( \dfrac{a}{b} \right) ^{m} } \\   \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}
Similar questions