Math, asked by devendrasingh753159, 7 months ago

please tell the answer of 25 (c).
It will be very helpful to me ​

Attachments:

Answers

Answered by Arceus02
3

\underline{\textbf{\textsf{ \purple{Solution}:- }}}

\sf{\\}

As \sf{a,\:b,\:c,\:d} are in continued proportion,

\sf{ \dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d} }

Let it be equal to \sf k

\longrightarrow \sf \dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d} = k\quad\dots(1)

\sf{\\}

Triplicate ratio: The triplicate ratio of \sf a : b is \sf a^3 : b^3

\sf{\\}

\underline{\underline{\tt{ \red{To\:prove}:- }}}

\sf \:  \dfrac{ {(a - b)}^{3} }{ {(b - c)}^{3} }  =  \dfrac{a}{d}

\underline{\underline{\tt{ \red{Proof}:- }}}

From (1),

\sf a = bk

\sf{b = ck}

\sf{c = dk}

On substituting the value of c in b and then the value of b in a, we get,

\quad\quad\bullet \sf a = dk^3

\quad\quad\bullet \sf b = dk^2

\quad\quad\bullet \sf  c = dk

\sf{\\}

\underline{\underline{\bf{ \pink{L.H.S}:- }}}

\sf \:  \dfrac{ {(a - b)}^{3} }{(b - c) ^{3} }

\longrightarrow \sf{\Bigg[ \dfrac{(dk^3 - dk^2)}{(dk^2 - dk)} \Bigg]^3}

\longrightarrow \sf{\Bigg[ \dfrac{(dk^2)(k - 1)}{(dk)(k - 1)} \Bigg]^3}

\longrightarrow \sf{\Bigg[ \dfrac{( \cancel{d}{k}^{\cancel{2}})\cancel{(k - 1)}}{\cancel{(dk)}\cancel{(k - 1)}} \Bigg]^3}

\longrightarrow \sf k^3

\underline{\underline{\bf{ \pink{R.H.S}:- }}}

\sf \dfrac{a}{d}

\longrightarrow \sf \dfrac{dk^3}{d}

\longrightarrow \sf \dfrac{\cancel{d} k^3 }{ \cancel{d}}

\longrightarrow \sf k^3

\sf{\\}

\leadsto \underline{\boxed{\mathsf{ \pink{L.H.S = R.H.S} }}}

Hence proved.

Similar questions