Math, asked by rudhranshraghav9560, 1 month ago

Please tell the answer of this question​

Attachments:

Answers

Answered by aryan073
7

Given :

Simplify:

  \\ \bullet \bf \:  \frac{2}{ \sqrt{5} +  \sqrt{3}  }  +   \frac{1}{ \sqrt{3} -  \sqrt{2}  }  -  \frac{3}{ \sqrt{5}  -  \sqrt{2} }

To Find:

• The values from this expression =?

Formula :

It is easy to simplify by using rationalizing method :

 \\  \bullet \tt \:  \frac{numerator}{denominator}  \times  \frac{denominator}{denominator}

Solution :

 \\  \bullet \bf \:  \frac{2}{ \sqrt{5}  +   \sqrt{3}  }  +  \frac{1}{ \sqrt{3} +  \sqrt{2}  }  -  \frac{3}{ \sqrt{5} +  \sqrt{2}  }

By rationalizing :

  \\  \\ \implies \sf \:  \frac{2( \sqrt{5} -  \sqrt{3} ) }{( \sqrt{5} +  \sqrt{3})( \sqrt{5}  -  \sqrt{3}   )}  +  \frac{1( \sqrt{3}  -  \sqrt{2} )}{( \sqrt{3}  +  \sqrt{2})( \sqrt{3}  -  \sqrt{2} )   }  -  \frac{3( \sqrt{5} -  \sqrt{2} ) }{( \sqrt{5}  +  \sqrt{2} )( \sqrt{5}  -  \sqrt{2}) }

 \\  \implies \sf \:  \frac{2( \sqrt{5} -  \sqrt{3}  )}{(5 - 3)}  +  \frac{1( \sqrt{3}  -  \sqrt{2}) }{(3 - 2)}  -  \frac{3( \sqrt{5} -  \sqrt{2} ) }{(5 - 2)}

  \\  \implies \sf \:   \cancel \frac{2}{2} ( \sqrt{5}  -  \sqrt{3} ) + 1( \sqrt{3}  -  \sqrt{2} ) -  \cancel \frac{3}{3} ( \sqrt{5}  -  \sqrt{2} )

 \\  \implies \sf \:   \cancel{\sqrt{5}  }- \cancel{  \sqrt{3}}  +   \cancel{\sqrt{3} } -  \cancel {\sqrt{2} }  -   \cancel { \sqrt{5} } +   \cancel{\sqrt{2} }

 \implies \boxed{ \sf{0}}

The value comes from this expression is 0

Answered by muskanshi536
2

Step-by-step explanation:

Given :

•Simplify:

  \\ \bullet \bf \:  \frac{2}{ \sqrt{5} +  \sqrt{3}  }  +   \frac{1}{ \sqrt{3} -  \sqrt{2}  }  -  \frac{3}{ \sqrt{5}  -  \sqrt{2} }

To Find:

• The values from this expression =?

Formula :

It is easy to simplify by using rationalizing method :

 \\  \bullet \tt \:  \frac{numerator}{denominator}  \times  \frac{denominator}{denominator}

Solution :

 \\  \bullet \bf \:  \frac{2}{ \sqrt{5}  +   \sqrt{3}  }  +  \frac{1}{ \sqrt{3} +  \sqrt{2}  }  -  \frac{3}{ \sqrt{5} +  \sqrt{2}  }

By rationalizing :

  \\  \\ \implies \sf \:  \frac{2( \sqrt{5} -  \sqrt{3} ) }{( \sqrt{5} +  \sqrt{3})( \sqrt{5}  -  \sqrt{3}   )}  +  \frac{1( \sqrt{3}  -  \sqrt{2} )}{( \sqrt{3}  +  \sqrt{2})( \sqrt{3}  -  \sqrt{2} )   }  -  \frac{3( \sqrt{5} -  \sqrt{2} ) }{( \sqrt{5}  +  \sqrt{2} )( \sqrt{5}  -  \sqrt{2}) }

 \\  \implies \sf \:  \frac{2( \sqrt{5} -  \sqrt{3}  )}{(5 - 3)}  +  \frac{1( \sqrt{3}  -  \sqrt{2}) }{(3 - 2)}  -  \frac{3( \sqrt{5} -  \sqrt{2} ) }{(5 - 2)}

  \\  \implies \sf \:   \cancel \frac{2}{2} ( \sqrt{5}  -  \sqrt{3} ) + 1( \sqrt{3}  -  \sqrt{2} ) -  \cancel \frac{3}{3} ( \sqrt{5}  -  \sqrt{2} )

 \\  \implies \sf \:   \cancel{\sqrt{5}  }- \cancel{  \sqrt{3}}  +   \cancel{\sqrt{3} } -  \cancel {\sqrt{2} }  -   \cancel { \sqrt{5} } +   \cancel{\sqrt{2} }

 \implies \boxed{ \sf{0}}

The value comes from this expression is 0

Similar questions