Math, asked by shivanshagr, 1 month ago

please tell the complete solution of this question....it is from the topic AGP ​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Given \:Question - }}

Sum to infinity of the series

\rm :\longmapsto\: {1}^{2} +  {2}^{2}x +  {3}^{2} {x}^{2} +  {4}^{2} {x}^{3} + -  -  -  \infty , \:  |x|  < 1

\rm :\longmapsto\:(A) \:  \: \dfrac{1 + x}{ {(1 - x)}^{3} }

\rm :\longmapsto\:(B) \:  \: \dfrac{1  -  x}{ {(1  +  x)}^{3} }

\rm :\longmapsto\:(C) \:  \: \dfrac{2 + x}{ {(1 - x)}^{3} }

\rm :\longmapsto\:(D) \:  \: none \: of \: these

\large\underline{\sf{Solution-}}

Given infinite series is

\rm :\longmapsto\: {1}^{2} +  {2}^{2}x +  {3}^{2} {x}^{2} +  {4}^{2} {x}^{3} + -  -  -  \infty , \:  |x|  < 1

Let assume that

\rm :\longmapsto\: S = {1}^{2} +  {2}^{2}x +  {3}^{2} {x}^{2} +  {4}^{2} {x}^{3} + -  -  -  \infty -  - (1)

can be rewritten as

\rm :\longmapsto\: S = 1 + 4x +  9 {x}^{2} +  16 {x}^{3} + -  - -   \infty  -  - (2)

Now, this sum is product of corresponding terms of two series

\rm :\longmapsto\: {1}^{2}, {2}^{2}, {3}^{2}, {4}^{2}, -  -  -

and

\rm :\longmapsto\:1,x, {x}^{2}, {x}^{3}, -  -  -

So, second series is an GP series with common ratio x.

So,

On multiply equation (2) by x, on both sides we get

\rm :\longmapsto\: xS = x+4 {x}^{2}  +  9 {x}^{3}+16 {x}^{4} + -  - -   \infty  -  - (3)

On Subtracting equation (3) from equation (2), we get

\rm :\longmapsto\: (1 - x)S = 1 + 3x+5 {x}^{2}  +  7{x}^{3}+  -  - -   \infty  -  - (4)

On multiply equation (4) by x, we get

\rm :\longmapsto\: x(1 - x)S = x + 3 {x}^{2} +5 {x}^{3}  +  7{x}^{4}+  -  - -   \infty  -  - (5)

On Subtracting equation (5) from equation (4), we get

\rm :\longmapsto\: (1 - x)(1 - x)S =1 + 2x + 2 {x}^{2} +2{x}^{3}  +  -  - -   \infty

\rm :\longmapsto\: {(1 - x)}^{2}S = 1 + 2x(1 + x +  {x}^{2} +  -  -  -  \infty )

We know,

Sum of infinite GP series is given by

 \boxed{ \bf{ \: S_ \infty  =  \frac{a}{1 - r}, \: provided \: that \:  |r| < 1}}

where,

a is first term of GP series

r is common ratio.

So, using this result,

\rm :\longmapsto\: {(1 - x)}^{2}S = 1 + 2x\bigg[\dfrac{1}{1 - x}\bigg]

\rm :\longmapsto\: {(1 - x)}^{2}S = 1 + \dfrac{2x}{1 - x}

\rm :\longmapsto\: {(1 - x)}^{2}S =  \dfrac{1 - x + 2x}{1 - x}

\rm :\longmapsto\: {(1 - x)}^{2}S =  \dfrac{1 + x}{1 - x}

\bf\implies \:S = \dfrac{1 + x}{ {(1 - x)}^{3} }

  • Hence, Option A is correct.

Similar questions