please tell this answer
Answers
GiveN:
- Length of the rectangle = 26 m
- Breadth of the rectangle = 12 m
To FinD:
- Area of the shaded region?
Step-wise-Step Explanation:
The area of the shaded region = Total area of the rectangle - Area of the unshaded region.
Here the unshaded part comprises of two semi-circles and a rectangle.
And,
- Width of inner rectangle = 12 m - 2(4 m) = 4 m
- Length of inner rectangle = 26 m - 2(3 m) - 2(2 m) = 16 m
- Radius of semi-circle = 2 m
First finding area of rectangle:
⇒ L × B unit²
⇒ 26 m × 12 m
⇒ 312 m²
Area of the unshaded region:
- 2(Area of semi-circles) + Area of rectangle.
Let's calculate using formula,
⇒ 2(πr² / 2) + l × b unit²
⇒ π(2)² + 4 × 16 m²
⇒ 4π + 64 m²
Then, area of the shaded region:
⇒ Area of rectangle - Area of unshaded region
⇒ 312 m² - (4π + 64) m²
⇒ 312 m² - 4π - 64 m²
⇒ 248 - 4π m²
Hence,
The correct answer is 248 - 4π.
Given:
Length of the rectangle = 26 m
Breadth of the rectangle = 12 m
To FinD:
Area of the shaded region?
Step-wise-Step Explanation:
The area of the shaded region = Total area of the rectangle - Area of the unshaded region.
Here the unshaded part comprises of two semi-circles and a rectangle.
And,
Width of inner rectangle = 12 m - 2(4 m) = 4 m
Length of inner rectangle = 26 m - 2(3 m) - 2(2 m) = 16 m
Radius of semi-circle = 2 m
First finding area of rectangle:
⇒ L × B unit²
⇒ 26 m × 12 m
⇒ 312 m²
Area of the unshaded region:
2(Area of semi-circles) + Area of rectangle.
Let's calculate using formula,
⇒ 2(πr² / 2) + l × b unit²
⇒ π(2)² + 4 × 16 m²
⇒ 4π + 64 m²
Then, area of the shaded region:
⇒ Area of rectangle - Area of unshaded region
⇒ 312 m² - (4π + 64) m²
⇒ 312 m² - 4π - 64 m²
⇒ 248 - 4π m²
Hence,