Math, asked by anshikaverma55, 3 months ago

Please tell this answer

Attachments:

Answers

Answered by Anonymous
2

Answer:

\orange{\bold{\underbrace{\overbrace{❥Answer᎓}}}}

Integrate the function

\huge\green\tt\frac{ \sqrt{tanx} }{sinxcosx}}

\huge\tt\frac{ \sqrt{tanx} }{sinxcosx}

ㅤ ㅤ ㅤ ㅤ ㅤ

\huge\tt \frac{ \sqrt{tanx} }{sinxcosx \times \frac{cosx}{cosx}}

ㅤ ㅤ ㅤ ㅤ ㅤ

\huge\tt \frac{ \sqrt{tanx} }{sinx \times \frac{ {cos}^{2} x}{cosx}} ㅤ ㅤ ㅤ

\huge\tt\frac{ \sqrt{tanx} }{ {cos}^{2} x \times \frac{sinx}{cosx} }

ㅤ ㅤ ㅤ ㅤ ㅤ

\huge\tt\frac{ \sqrt{tanx} }{ {cos}^{2}x \times tanx }

\huge\tt {tan}^{ \frac{1}{2} - 1 } \times \frac{1}{ {cos}^{2} x}ㅤ ㅤ ㅤ ㅤ ㅤ

\huge\tt {(tan)}^{ - \frac{ 1}{2} } \times \frac{1}{ {cos}^{2}x } = {(tanx)}^{ - \frac{1}{2} } \times {sec}^{2} x⇛(tan)

ㅤ ㅤ ㅤ ㅤ ㅤ

\huge\tt {(tan)}^{ - \frac{ 1}{2} } \times \frac{1}{ {cos}^{2}x } = ∫ {(tanx)}^{ - \frac{1}{2} } \times {sec}^{2} x \times dx⇛(tan)

ㅤ ㅤ ㅤ ㅤ ㅤ

\bold\blue{☛\: Let tanx=t}

\bold\blue{☛ \:Differentiating \: both \: sides \: w.r.t.x}

ㅤ ㅤ ㅤ ㅤ ㅤ

\huge\tt {sec}^{2} x = \frac{dt}{dx}

\huge\tt{dx \frac{dt}{ {sec}^{2}x }}

ㅤ ㅤ ㅤ ㅤ ㅤ

\huge\tt∴∫ {(tanx)}^{ - \frac{1}{2} } \times {sec}^{2} x \times dx

\huge\tt ∫ {(t)}^{ - \frac{1}{2} } \times {sec}^{2} x \times \frac{dt}{ {sec}^{2}x }

\huge\tt ∫ {t}^{ - \frac{1}{2} }ㅤ ㅤ

\huge\tt\frac{ {t}^{ - \frac{1}{2} + 1} }{ - \frac{1}{2} + 1 }

\huge\tt \frac{ {t}^{ \frac{1}{2} } }{ \frac{1}{2} } + c = 2 {t}^{ \frac{1}{2} } + c = 2 \sqrt{t}

\huge2 \sqrt{t} + c = 2 \sqrt{tanx}

╚════════════════════.

Answered by Anonymous
4

Answer:

 =  >  \small (\frac{2}{9} )^{3}  \times ( \frac{2}{9} )^{8}  = ( \frac{2}{9}) ^{2x - 1}   \\  \\ =  > \:  \:  \:  \:  \:  \:  \:   ( \frac{2}{9} )^{3 + 8}  = ( \frac{2}{9} )^{2x - 1}  \\ \\ =  >  \:  \:  \:  \:  \:  \:  \:  \:  \:   ( \frac{2}{9} ) ^{11}  =  ( \frac{2}{9} ) ^{2x - 1}

 =  > 11 = 2x - 1 \\  =  > 11 + 1 = 2x \\  =  >  \:  \:  \:  \:  \:  \:  \: 12 = 2x \\  =  >  \:  \:  \:  \:  \:  \:  \:  \: x =  \frac{12}{2}  \\  =  >  \huge \: x = 6

hence, the value of x = 6

Step-by-step explanation:

hope it's helpful,,

\huge{\textbf{\textsf{{\color{red}{@}}{\red{❣}}{|}}}} \huge{\textbf{\textsf{{\color{navy}{O}}{\purple {P}} {\pink{BO}}{\color{pink}{Y࿐}}}}}

Similar questions