Science, asked by aarchi82, 1 year ago

please tell this question with full explanation I will mark you as brainlist

Attachments:

Answers

Answered by baseit
0

Answer:

Increase Font Size

Logo for BC Open Textbooks

Toggle Menu

Search in book …

CONTENTS

CHEMISTRY

Chapter 7. Chemical Bonding and Molecular Geometry

7.3 Lewis Symbols and Structures

Learning Objectives

By the end of this section, you will be able to:

Write Lewis symbols for neutral atoms and ions

Draw Lewis structures depicting the bonding in simple molecules

Thus far in this chapter, we have discussed the various types of bonds that form between atoms and/or ions. In all cases, these bonds involve the sharing or transfer of valence shell electrons between atoms. In this section, we will explore the typical method for depicting valence shell electrons and chemical bonds, namely Lewis symbols and Lewis structures.

Lewis Symbols

We use Lewis symbols to describe valence electron configurations of atoms and monatomic ions. A Lewis symbol consists of an elemental symbol surrounded by one dot for each of its valence electrons:

A Lewis structure of calcium is shown. A lone pair of electrons are shown to the right of the symbol.

Figure 1 shows the Lewis symbols for the elements of the third period of the periodic table.

A table is shown that has three columns and nine rows. The header row reads “Atoms,” “Electronic Configuration,” and “Lewis Symbol.” The first column contains the words “sodium,” “magnesium,” “aluminum,” “silicon,” “phosphorus,” “sulfur,” “chlorine,” and “argon.” The second column contains the symbols and numbers “[ N e ] 3 s superscript 2,” “[ N e ] 3 s superscript 2, 3 p superscript 1,” “[ N e ] 3 s superscript 2, 3 p superscript 2,” “[ N e ] 3 s superscript 2, 3 p superscript 3,” “[ N e ] 3 s superscript 2, 3 p superscript 4,” “[ N e ] 3 s superscript 2, 3 p superscript 5,” and “[ N e ] 3 s superscript 2, 3 p superscript 6.” The third column contains Lewis structures for N a with one dot, M g with two dots, A l with three dots, Si with four dots, P with five dots, S with six dots, C l with seven dots, and A r with eight dots.

Double and Triple Bonds

As previously mentioned, when a pair of atoms shares one pair of electrons, we call this a single bond. However, a pair of atoms may need to share more than one pair of electrons in order to achieve the requisite octet. A double bond forms when two pairs of electrons are shared between a pair of atoms, as between the carbon and oxygen atoms in CH2O (formaldehyde) and between the two carbon atoms in C2H4 (ethylene):

Two pairs of Lewis structures are shown. The left pair of structures shows a carbon atom forming single bonds to two hydrogen atoms. There are four electrons between the C atom and an O atom. The O atom also has two pairs of dots. The word “or” separates this structure from the same diagram, except this time there is a double bond between the C atom and O atom. The name, “Formaldehyde” is written below these structures. A right-facing arrow leads to two more structures. The left shows two C atoms with four dots in between them and each forming single bonds to two H atoms. The word “or” lies to the left of the second structure, which is the same except that the C atoms form double bonds with one another. The name, “Ethylene” is written below these structures.

u carbon monoxide (CO) and the cyanide ion (CN–):

Similar questions