Math, asked by ashutoshundhra477, 2 months ago

Please tell urgent question 2 maths

Attachments:

Answers

Answered by kritikasingh120306
0

in 1st case

a and b both are 2

in 2nd case a is 5 and b is 6

Attachments:
Answered by Salmonpanna2022
15

Answer:

  1. The value of a = 2 and b = -1
  2. The value of a = 2 and b = -.

Step-by-step explanation:

Question:-

If a and b are rational numbers, find the value of a and b in the following:

 \tt{(i)  \:  \frac{ \sqrt{3}  - 1}{ \sqrt{3}  + 1} } = a + b \sqrt{3}  \\  \\

 \tt{(ii) \:  \frac{ \sqrt{2} +  \sqrt{3}  }{3 \sqrt{2}  - 2 \sqrt{3} }  } = a - b \sqrt{6}  \\  \\

Solution:-

Let's solve the problem

We have,

 \tt{(i)  \:  \frac{ \sqrt{3}  - 1}{ \sqrt{3}  + 1} } = a + b \sqrt{3}  \\

The denominator is √3+1. Multiplying the numerator and denominator by √3-1, we get

⟹ \frac{ \sqrt{3}  - 1}{ \sqrt{3}  + 1}  \times  \frac{ \sqrt{3}  - 1}{ \sqrt{3}  - 1}  \\  \\

⟹ \frac{( \sqrt{3}  - 1)( \sqrt{3}  - 1)}{( \sqrt{3}  + 1)( \sqrt{3} - 1) }  \\

⬤ Applying Algebraic Identity

  1. (a-b)(a-b) = (a-b)² = a²-b²+2ab to the numerator and
  2. (a+b)(a-b) = a² - b² to the denominator.

We get,

⟹ \frac{( \sqrt{3}  - 1 {)}^{2} }{( \sqrt{3} {)}^{2}  - (1 {)}^{2}  }  \\  \\

⟹ \frac{( \sqrt{3} {)}^{2}  + (1 {)}^{2} - 2 \times  \sqrt{3} \times 1   }{3 - 1}  \\  \\

⟹ \frac{3 + 1 - 2 \times  \sqrt{3}  \times 1}{2}  \\  \\

⟹ \frac{ {4}- 2 \sqrt{3} }{ {2}}  \\  \\

⟹2 -  \sqrt{3}  \\

∴ \: 2 -  \sqrt{3}   = a - b \sqrt{3} \\ \\

On, Comparing the value of

⟹a = 2 \: and \: b \:  =  - 1 \:  \: Ans.

________________________

 \tt{(ii) \:  \frac{ \sqrt{2} +  \sqrt{3}  }{3 \sqrt{2}  - 2 \sqrt{3} }  } = a - b \sqrt{6}  \\

The denominator is 3√2-2√3. Multiplying the numerator and denomination by 3√2+2√3, we get

⟹ \frac{ \sqrt{2} +  \sqrt{3}  }{3 \sqrt{2} - 2 \sqrt{3}  }  \times  \frac{3 \sqrt{2}  - 2 \sqrt{3} }{3 \sqrt{2}  - 2 \sqrt{3} }  \\  \\

⟹ \frac{( \sqrt{2}  +  \sqrt{3})(3 \sqrt{2}  + 2 \sqrt{3} ) }{(3 \sqrt{2} - 2 \sqrt{3}  )(3 \sqrt{2}   + 2 \sqrt{3} }  \\

⬤ Applying Algebraic Identity

(a-b)(a+b) = a² - b² to the denominator

We get,

⟹ \frac{3 \sqrt{2 \times 2} + 2 \sqrt{3 \times 2}  + 3 \sqrt{2 \times 3}  + 2 \sqrt{3 \times 3}  }{(3 \sqrt{2}  {)}^{2} - (2 \sqrt{3}  {)}^{2}  }  \\  \\

⟹ \frac{3 \times 2 + 2 \sqrt{6}  + 3 \sqrt{6}  + 2 \times 3}{18 - 12}  \\  \\

⟹ \frac{12 + 5 \sqrt{6} }{6}  \\  \\

⟹2 +  \frac{5}{6}  \sqrt{6}  \\  \\

∴  \: \: a - b \sqrt{6}  = 2 +  \frac{5}{6} \sqrt{6}  \\  \\

On comparing the value of

a = 2 \:  \: and \:  \: b \: = -    \frac{5}{6} \:  \:  \:  \:   Ans.\\  \\

:)

Similar questions