Math, asked by marodiavedant, 10 months ago

please tell with full explanation I will make him as brainliest​

Attachments:

Answers

Answered by veerendraprasad1756
1

Step-by-step explanation:

Suitable identity =( x+1/x)^2=x^2 + 1/x^2+2

Attachments:
Answered by mddilshad11ab
76

\bold\green{\underline{Given:}}

If X+1/X=4

\bold\green{\underline{Find:X^4+\frac{1}{X^4}=?}}

\huge\bold\orange{\underline{Solution:}}

  • Here, square on both sides

=>(x +  \frac{1}{x}) {}^{2}   =  {5}^{2}  \\  \\ => {x}^{2}  + 2 \times x \times  \frac{1}{x}  +  \frac{1}{ {x}^{2} }  = 25 \\  \\ =>{x}^{2}  +  \frac{1}{ {x}^{2} }  = 25 - 2 \\  \\ => {x}^{2}  +  \frac{1}{ {x}^{2} }  = 23

  • Again squaring on both sides

=>( {x}^{2}  +  \frac{1}{ {x}^{2} } ) {}^{2} =  {23}^{2}  \\  \\ =>{x}^{4}  + 2 \times  {x}^{2}  \times  \frac{1}{ {x}^{2} }  +  \frac{1}{ {x}^{4} }  = 529 \\  \\ => {x}^{4}  +  \frac{1}{ {x}^{4} }  = 529 - 2 \\  \\ => {x}^{4}  +  \frac{1}{ {x}^{4} }  = 527

Hence,

\bold\purple{\boxed{X^4+\frac{1}{X^4}=527}}

Similar questions