India Languages, asked by suryanshumohansingh, 1 month ago

Please tennetiraj86 please answer this I will Mark you brainlist.​

Attachments:

Answers

Answered by Anonymous
109

Answer:

\begin{gathered}{\underline{\underline{\maltese{\large{\textsf{\textbf{ Given:}}}}}}}\end{gathered}

  • \dashrightarrowPrinciple = Rs.256 0per quarterly
  • \dashrightarrowRate of Interest = 100% per annumn
  • \dashrightarrowTime = 1 year

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\large{\textsf{\textbf{ To Find:}}}}}}}\end{gathered}

  • \dashrightarrowAmount
  • \dashrightarrowCompound Interest

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\large{\textsf{\textbf{ Using Formula:}}}}}}}\end{gathered}

{\large\dag}{\underline{\sf{\boxed{\sf{Amount = P \bigg \{ 1 + \dfrac{R }{100} \bigg\}^{n}}}}}}

\dag{\underline{\boxed{\sf{Compound \: Interest ={Amount- Principle }}}}}

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\large{\textsf{\textbf{ Solution:}}}}}}}\end{gathered}

{\dag \: {\underline{\underline{\frak{\red{Here \::}}}}}}

The Principle is 256 per quarterly,

As we know that,

 \quad\dashrightarrow{\sf{1 \:  year = 4 \:  months}}

So,

 \quad\dashrightarrow{\sf{Rate  \: of \:  Interest =  \dfrac{100}{4}  }}

 \quad\dashrightarrow{\sf{Rate  \: of \:  Interest =  \cancel{\dfrac{100}{4}}}}

 \quad\dashrightarrow{\sf{Rate  \: of \:  Interest =  25 \%}}

  • \dashrightarrow Hence, The rate of Interest 25% per quarterly

\begin{gathered}\end{gathered}

{\dag \: {\underline{\underline{\frak{\red{Thus\::}}}}}}

  • \dashrightarrow Principle = Rs.256 per quarterly
  • \dashrightarrow Time = 4 quarterly
  • \dashrightarrow Rate of Interest = 25% per quarterly

\begin{gathered}\end{gathered}

{\dag \: {\underline{\underline{\frak{\red{Finding \:  the \:  Amount \: of \: 1 \: year \::}}}}}}

 \quad{:  \implies{\sf{Amount =  P \bigg(1 + \dfrac{R }{100} \bigg)^{n}}}}

  • Substituting the values

 \quad{:  \implies{\sf{Amount =  256 \bigg(1 + \dfrac{25}{100} \bigg)^{4}}}}

 \quad{:  \implies{\sf{Amount =  256 \bigg(1 + {\cancel\dfrac{25}{100}} \bigg)^{4}}}}

 \quad{:  \implies{\sf{Amount =  256 \bigg(1 + \dfrac{1}{4} \bigg)^{4}}}}

 \quad{:  \implies{\sf{Amount =  256 \bigg(  \dfrac{(1 \times 4) + 1}{4} \bigg)^{4}}}}

\quad{:  \implies{\sf{Amount =  256 \bigg(  \dfrac{4 + 1}{4} \bigg)^{4}}}}

\quad{:  \implies{\sf{Amount =  256 \bigg(  \dfrac{5}{4} \bigg)^{4}}}}

\quad{:  \implies{\sf{Amount =  256 \bigg(  \dfrac{5}{4} \times \dfrac{5}{4} \times \dfrac{5}{4} \times \dfrac{5}{4} \bigg)}}}

\quad{:  \implies{\sf{Amount =  256 \bigg(  \dfrac{625}{256} \bigg)}}}

\quad{:  \implies{\sf{Amount =  256 \times  \dfrac{625}{256}}}}

\quad{:  \implies{\sf{Amount = \cancel{256} \times \dfrac{625}{\cancel{256}}}}}

\quad{:  \implies{\sf{Amount = {625}}}}

\quad\dag{\underline{\boxed{\sf{\pink{Amount = {625}}}}}}

  • \dashrightarrow Hence, The Amount is Rs.625

\begin{gathered}\end{gathered}

{\dag \: {\underline{\underline{\frak{\red{Finding  \: Compound \:  Interest \::}}}}}}

 \quad {: \implies{\sf{Compound \: Interest ={Amount- Principle }}}}

  • Substituting the values

 \quad {: \implies{\sf{Compound \: Interest ={625- 256}}}}

 \quad {: \implies{\sf{Compound \: Interest ={369}}}}

\quad\dag\underline{\boxed{\sf{\pink{Compound \: Interest ={369}}}}}

  • \dashrightarrow Henceforth,The Compound Interest is Rs.369.

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\large{\textsf{\textbf{ Additional Information :}}}}}}}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \dag \: \underline{\bf{More \: Useful \: Formula}}\\ {\boxed{\begin{array}{cc}\dashrightarrow {\sf{Amount = Principle + Interest}} \\ \\ \dashrightarrow \sf{ P=Amount - Interest }\\ \\ \dashrightarrow \sf{ S.I = \dfrac{P \times R \times T}{100}} \\ \\ \dashrightarrow \sf{P = \dfrac{Interest \times 100 }{Time \times Rate}} \\ \\ \dashrightarrow \sf{P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}} \\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Answered by aartisharmahimachal
0

Explanation:

HERE IS YOUR ANSWER MATE

HOPE IT HELPS UH

MARK AS BRAINLIST

Attachments:
Similar questions