Math, asked by haromi567, 11 months ago

Please
7 log( \frac{15}{16} )  + 6 log \frac{8}{3}  + 5 log( \frac{2}{5} )  +  log( \frac{32}{25} )
solve this problem ​

Answers

Answered by prajwal1697
0

 \huge \underline \bold \green{QUESTION}:

7 log( \frac{15}{16} ) + 6 log \frac({8}{3} )+ 5 log( \frac{2}{5} ) + log( \frac{32}{25} )

_________________________

   \huge\underline\bold \red{final \: answer}

 {  \bold{the \: simplified \: form \: is \:  log(3)} }

_________________________

 \boxed{\underline\bold \red{formulas \: used}}

:⇉m log( \alpha )  =  log( { \alpha }^{m} )  \\:⇉  log( \alpha )  +  log( \beta )  + </p><p>log( \gamma )  =  log( \alpha  \beta  \gamma )

_________________________

\huge \underline \bold \red{SOLUTION}:

 =  &gt; 7 log( \frac{15}{16} ) + 6 log \frac({8}{3}) + 5 log( \frac{2}{5} ) + log( \frac{32}{25} )  \\  =  &gt;  log { (\frac{15}{16}) }^{7}   +  log{( \frac{8}{3}) }^{6}  +  log {( \frac{2}{5}) }^{5}  +  log { \frac{32}{25} } \\  =  &gt;  log {\huge{(}} \frac{ {15}^{7} }{ {16}^{7} }  \times  \frac{ {8}^{6} }{ {3}^{6} }  \times   \frac{ {2}^{5}}{ {5}^{5} }  \times  \frac{32}{25}  \huge{)} \\   =  &gt;  log{ \huge{(}} \frac{ {(3 \times 5)}^{7} \times  {8}^{6}  \times  {2}^{5}   \times  {2}^{5} }{ {(2 \times 8)}^{7}  \times  {3}^{6}  \times  {5}^{5}  \times  {5}^{2} }  \huge{)} \\  \:  =  &gt;  log{ \huge{(}} \frac{3 \times   {2}^{3} }{8}  \huge{)} \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \boxed{ \green{=  &gt;  log(3)}}}

________________________

hope it helps you

please mark as the

brainliest

Similar questions