Math, asked by jeevankishorbabu9985, 2 months ago

please
 \red {\tt{integrate \frac{ (3x + 1)}{(x ^ 2 + 9)} dx \:  from \:  0  \: to  \: 3}}

Answers

Answered by varadad25
8

Answer:

\displaystyle{\boxed{\red{\sf\:\int\limits_0^3\:\left(\:\dfrac{3x\:+\:1}{x^2\:+\:9}\:\right)\:dx\:=\:\ln\:(\:2\:\sqrt{2}\:)\:+\:\dfrac{\pi}{12}}}}

Step-by-step-explanation:

The given definite integral is

\displaystyle{\sf\:I\:=\:\int\limits_0^3\:\left(\:\dfrac{3x\:+\:1}{x^2\:+\:9}\:\right)\:dx}

\displaystyle{\implies\sf\:I\:=\:\int\limits_0^3\:\left(\:\dfrac{3x}{x^2\:+\:9}\:\right)\:dx\:+\:\int\limits_0^3\:\left(\:\dfrac{1}{x^2\:+\:9}\:\right)\:dx}

Let,

\displaystyle{\sf\:\int\limits_0^3\:\left(\:\dfrac{3x}{x^2\:+\:9}\:\right)\:dx\:=\:I_1}

And

\displaystyle{\sf\:\int\limits_0^3\:\left(\:\dfrac{1}{x^2\:+\:9}\:\right)\:dx\:=\:I_2}

Now,

\displaystyle{\sf\:I_1\:=\:\int\limits_0^3\:\left(\:\dfrac{3x}{x^2\:+\:9}\:\right)\:dx}

Put x² + 9 = t

Differentiating both sides w.r.t. x, we get,

\displaystyle{\implies\sf\:\dfrac{d}{dx}\:(\:x^2\:+\:9\:)\:=\:\dfrac{d}{dx}\:t}

\displaystyle{\implies\sf\:\dfrac{d}{dx}\:(\:x^2\:)\:+\:\dfrac{d}{dx}\:9\:=\:\dfrac{dt}{dx}}

\displaystyle{\implies\sf\:2x\:+\:0\:=\:\dfrac{dt}{dx}}

\displaystyle{\implies\sf\:dx\:=\:\dfrac{dt}{2x}}

For lower limit, x = 0,

x² + 9 = t

⇒ 0 + 9 = t

t = 9

For upper limit, x = 3,

x² + 9 = t

⇒ ( 3 )² + 9 = t

⇒ t = 9 + 9

t = 18

Now, using this,

\displaystyle{\implies\sf\:I_1\:=\:\int\limits_9^{18}\:\left(\:\dfrac{3\:\cancel{x}}{t}\:\dfrac{1}{2\:\cancel{x}}\:\right)\:dt}

\displaystyle{\implies\sf\:I_1\:=\:\dfrac{3}{2}\:\int\limits_9^{18}\:\dfrac{1}{t}\:dt}

\displaystyle{\implies\sf\:I_1\:=\:\dfrac{3}{2}\:\ln\:(\:t\:)\:\bigg|_9^{18}}

By re-substituting t = x² + 9,

\displaystyle{\implies\sf\:I_1\:=\:\dfrac{3}{2}\:\ln\:(\:x^2\:+\:9\:)\:\bigg|_0^3}

\displaystyle{\implies\sf\:I_1\:=\:\dfrac{3}{2}\:[\:\ln\:(\:3^2\:+\:9\:)\:-\:\ln\:(\:0^2\:+\:9\:)\:]}

\displaystyle{\implies\sf\:I_1\:=\:\dfrac{3}{2}\:[\:\ln\:(\:9\:+\:9\:)\:-\:\ln\:(\:0\:+\:9\:)\:]}

\displaystyle{\implies\sf\:I_1\:=\:\dfrac{3}{2}\:[\:\ln\:(\:18\:)\:-\:\ln\:(\:9\:)\:]}

\displaystyle{\implies\sf\:I_1\:=\:\dfrac{3}{2}\:\times\:\ln\:\left(\:\dfrac{18}{9}\:\right)}

\displaystyle{\implies\sf\:I_1\:=\:\dfrac{3}{2}\:\times\:\ln\:(\:2\:)}

\displaystyle{\implies\sf\:I_1\:=\:\ln\:(\:2^{\frac{3}{2}}\:)}

\displaystyle{\implies\sf\:I_1\:=\:\ln\:[\:(\:2^{\frac{1}{2}} \:)^3\:]}

\displaystyle{\implies\sf\:I_1\:=\:\ln\:[\:(\:\sqrt{2}\:)^3\:]}

\displaystyle{\implies\sf\:I_1\:=\:\ln\:(\:2\:\sqrt{2}\:)}

Now,

\displaystyle{\sf\:I_2\:=\:\int\limits_0^3\:\left(\:\dfrac{1}{x^2\:+\:9}\:\right)\:dx}

\displaystyle{\implies\sf\:I_2\:=\:\int\limits_0^3\:\left(\:\dfrac{1}{x^2\:+\:3^2}\:\right)\:dx}

\displaystyle{\implies\sf\:I_2\:=\:\int\limits_0^3\:\left(\:\dfrac{1}{1\:+\:\left(\:\dfrac{x}{3}\:\right)^2}\:\dfrac{dx}{3^2}\:\right)}

Put \displaystyle{\sf\:\dfrac{x}{3}\:=\:t}

Differentiating both sides w.r.t. x, we get,

\displaystyle{\implies\sf\:\dfrac{d}{dx}\:\left(\:\dfrac{x}{3}\:\right)\:=\:\dfrac{dt}{dx}}

\displaystyle{\implies\sf\:\dfrac{1}{3}\:\dfrac{d}{dx}\:x\:=\:\dfrac{dt}{dx}}

\displaystyle{\implies\sf\:\dfrac{1}{3}\:=\:\dfrac{dt}{dx}}

\displaystyle{\implies\sf\:dx\:=\:3\:dt}

For lower limit, x = 0,

\displaystyle{\sf\:\dfrac{x}{3}\:=\:t}

\displaystyle{\implies\sf\:\dfrac{0}{3}\:=\:t}

\displaystyle{\implies\boxed{\sf\:t\:=\:0}}

For upper limit, x = 3,

\displaystyle{\sf\:\dfrac{x}{3}\:=\:t}

\displaystyle{\implies\sf\:\dfrac{3}{3}\:=\:t}

\displaystyle{\implies\boxed{\sf\:t\:=\:1}}

Now, using this,

\displaystyle{\implies\sf\:I_2\:=\:\int\limits_0^1\:\left(\:\dfrac{1}{1\:+\:t^2}\:\right)\:\dfrac{3\:dt}{3^2}}

\displaystyle{\implies\sf\:I_2\:=\:\dfrac{1}{3}\:\int\limits_0^1\:\left(\:\dfrac{1}{1\:+\:t^2}\:\right)\:dt}

\displaystyle{\implies\sf\:I_2\:=\:\dfrac{1}{3}\:\tan^{-\:1}\:(\:t\:)\:\bigg|_0^1}

By re-substituting \displaystyle{\sf\:t\:=\:\dfrac{x}{3}}

\displaystyle{\implies\sf\:I_2\:=\:\dfrac{1}{3}\:\tan^{-\:1}\:\left(\:\dfrac{x}{3}\:\right)\:\bigg|_0^3}

\displaystyle{\implies\sf\:I_2\:=\:\dfrac{1}{3}\:\left[\:\tan^{-\:1}\:\left(\:\dfrac{3}{3}\:\right)\:-\:\tan^{-\:1}\:\left(\:\dfrac{0}{3}\:\right)\:\right]}

\displaystyle{\implies\sf\:I_2\:=\:\dfrac{1}{3}\:\left(\:\tan^{-\:1}\:(\:1\:)\:-\:\tan^{-\:1}\:(\:0\:)\:\right)}

\displaystyle{\implies\sf\:I_2\:=\:\dfrac{1}{3}\:\times\:\dfrac{\pi}{4}}

\displaystyle{\implies\sf\:I_2\:=\:\dfrac{\pi}{12}}

Now,

\displaystyle{\sf\:I\:=\:I_1\:+\:I_2}

\displaystyle{\implies\sf\:I\:=\:\ln\:(\:2\:\sqrt{2}\:)\:+\:\dfrac{\pi}{12}}

\displaystyle{\therefore\underline{\boxed{\red{\sf\:\int\limits_0^3\:\left(\:\dfrac{3x\:+\:1}{x^2\:+\:9}\:\right)\:dx\:=\:\ln\:(\:2\:\sqrt{2}\:)\:+\:\dfrac{\pi}{12}}}}}

Answered by takename25
10

Answer:

Step-by-step explanation:

Hope it helps you

Attachments:
Similar questions