please the right answer
Answers
Answer and explanation:
Given,
OA = OB, OD = OC.
Therefore, in triangles AOD and BOC, we have
OA = OB (given)
Angle AOD = Angle BOC (vertically opposite angles are equal)
OD = OC.
Hence, by Side-Angle-Side congruence condition, triangle AOD is congruent to triangle BOC.
Hence, AD = BC (for they are congruent parta of congruent triangles)
Similarly, angle CBO = angle DAO.
But, AB acts as a transversal for BC and AD.
Hence, AD and BC are parallel to each other.
I hope this helps. :D
Explanation
(i)△AOD और △BOC में,
OA = OB (दिया गया हैं)
OD = OC (दिया गया है)
ㄥAOD = ㄥBOC (शीर्षाभिमुख कोणों के युग्म)
इसलिए, △AOD= △BOC (भुजा-कोण-भुजा सर्वागसमता के नियम द्वारा)
(ii) ㄥOAD = ㄥOBC (CPCT)
और रेखाखंडों AD और BC के लिए एकान्तर कोणों के रूप में। इसलिए, AD || BC.
In △AOD & △BCO
=> OD = OC (given)
OA = OB (given)
ㄥAOD = ㄥCOB (vertically opposite)
=> △AOD =△BOC
ㄥOAD = ㄥOBC (angles corresponding to congruent sides)
[∴AD & BC make equal angles with the same line AB]
Hence AD||BC
Hope it may help uh
Plz Mark me as Brainliest