Math, asked by rumeysa7061, 10 months ago


please
Transactional solution
__iyi gunler__
:)

Attachments:

Answers

Answered by tahseen619
3

5

Step-by-step explanation:

Given:

 \sqrt{11 -  \sqrt[3]{5 +  \sqrt{4 + x} } }  = 3

To find:

The value of x

Solution:

Nasıl çözeceğimi bilmiyorum, sadece şaka yapıyorum ....

1st there are square roots and cube roots in the question so we will square and cube the terms as required.

2nd After elimination of roots we will as follow equation rules. i.e writing variable in one side and constant one side and just simplify.

\sqrt{11 -  \sqrt[3]{5 +  \sqrt{4 + x} } }  = 3

[Squaring both side]

 {(\sqrt{11 -  \sqrt[3]{5 +  \sqrt{4 + x} } }  )}^{2}  =( 3 {)}^{2}   \\  \\{11 -  \sqrt[3]{5 +  \sqrt{4 + x} } }   = 9 \\  \\ 11  - 9  = \sqrt[3]{5 +  \sqrt{4 + x} }  \\  \\ 2 = \sqrt[3]{5 +  \sqrt{4 + x} }

[Cubing both side]

(2 {)}^{3} = {(\sqrt[3]{5 +  \sqrt{4 + x} }) }^{3} \\  \\ 8 = 5 +  \sqrt{4 + x}  \\  \\ 8 - 5 =  \sqrt{4 + x}  \\  \\  3 =  \sqrt{4 + x}   \\  \\  {(3)}^{2} =  {( \sqrt{4 + x} )}^{2}  \\  \\ 9 = 4 + x \\   \\ 9 - 4 = x \\  \\ x = 5

Hence, The required answer is 5.

Similar questions