Please try this above attached sample.
Answers
Answer:
0
Step-by-step explanation:
⇒ x = 1 / ( 2 + √3 )
Rationalising the denominator
⇒ x = ( 2 - √3 ) / ( 4 - 3 )
⇒x = 2 - √3
Squaring on both sides
⇒ x² = ( 2 - √3 )²
⇒ x² = 2² + ( √3 )² - 2( 2 )( √3 )
⇒ x² = 4 + 3 - 4√3
⇒ x² = 7 - 4√3
Now we will calculate the given polynomial
x³ - x² - 11x + 3
= x² ( x - 1 ) - 11x + 3
= ( 7 - 4√3 )( 2 - √3 - 1 ) - 11( 2 - √3 ) + 3
= ( 7 - 4√3 )( 1 - √3 ) - 22 + 11√3 + 3
= 7( 1 - √3 ) - 4√3( 1 - √3 ) - 19 + 11√3
= 7 - 7√3 - 4√3 + 12 - 19 + 11√3
= 19 - 12 - 11√3 + 12 - 19 + 11√3
= 0
Therefore the value of the given polynomial is 0.
Answer:
Answer:
0
Step-by-step explanation:
⇒ x = 1 / ( 2 + √3 )
Rationalising the denominator
⇒ x = ( 2 - √3 ) / ( 4 - 3 )
⇒x = 2 - √3
Squaring on both sides
⇒ x² = ( 2 - √3 )²
⇒ x² = 2² + ( √3 )² - 2( 2 )( √3 )
⇒ x² = 4 + 3 - 4√3
⇒ x² = 7 - 4√3
Now we will calculate the given polynomial
x³ - x² - 11x + 3
= x² ( x - 1 ) - 11x + 3
= ( 7 - 4√3 )( 2 - √3 - 1 ) - 11( 2 - √3 ) + 3
= ( 7 - 4√3 )( 1 - √3 ) - 22 + 11√3 + 3
= 7( 1 - √3 ) - 4√3( 1 - √3 ) - 19 + 11√3
= 7 - 7√3 - 4√3 + 12 - 19 + 11√3
= 19 - 12 - 11√3 + 12 - 19 + 11√3
= 0
Therefore the value of the given polynomial is 0.