Please try to answer IT IS SO URGENT....
remained er and factor theorem :
given that x+2andx-3are factors of x^3+ax+b.calculate the values of a and b.also find the remaining factor
use the remainder theorem to factorise the expression 2x^3+9x^2+7x-6.hence solve the equation 2x^3+9x^2+7x-6=0
trigonometry:
cosecA+1/cosec A-1=(secA+tanA)^2
cotA-tanA=2cos^2A-1/sinAcosA
√1+cosA/1-cosA +√1-cosa/1+cosa=2coscA
cosa/cosecA+1+cosa/cosecA-1=2tanA
1+cotA/cosa+1+tanA/sins=2(secA+cosecA)
√1+sins/1-sinA-√1-sinA/1+sins=2tanA
Answers
Answered by
5
1.
Solution:
Given: (x+2) and (x-3) are factors of equation x^3+ax+b,.
To find: values of a and b (a=?, b=?)
If, (x+2) is a factor,
x+2=0
=>x=-2
By using remainder theorem we get,
p(x)=x^3+ax+b
p(-2)=(-2)^3+a(-2)+b
0 =(-8)-2a+b
0 =-8-2a+b
-2a+b=8 ....(i)
If (x-3) is a factor,
x-3=0
=>x=3
By using remainder theorem we get,
p(x)=x^3+ax+b
p(3)=(3)^3+a(3)+b
0 =27+3a+b
3a+b=-27...(ii)
Subtracting (i) from (ii) we get,
(3a+b) - (-2a+b) = (-27)-(8)
3a+b+2a-b = -27-8
5a=-35
a=-7
Substituting value of a in (ii) we get,
3a+b=-27
3(-7)+b=-27
-21+b=-27
b=-27+21
b=-6
2.
Solution:
Given: p(x)= 2x^3+9x^2+7x-6
By Using Factorization Method;
Let x=1/2
p(x)=2x^3+9x^2+7x-6
p(1/2)=2(1/2)^3+9(1/2)^2+7(1/2)-6
p(1/2)=2(1/8)+9(1/4)+(7/2)-6
p(1/2)=1/4+9/4+7/2-6
p(1/2)=10/4+14/4-24/4
p(1/2)=0......(x-1/2) x 2 =>(2x-1) is a factor
Let x=-2
p(x)=2x^3+9x^2+7x-6
p(-2)=2(-2)^3+9(-2)^2+7(-2)-6
p(-2)=2(-8)+9(4)+(-14)-6
p(-2)=-16+36-14-6
p(-2)=0.........(x+2) is a factor
Let x= -3
p(x)=2x^3+9x^2+7x-6
p(-3)=2(-3)^3+9(-3)^2+7(-3)-6
p(-3)=2(-27)+9(9)-21-6
p(-3)=-54+81-27
p(-3)=0........(x+3) is a factor
p(x)=2x^3+9x^2+7x-6=(2x-1)(x-2)(x+3)
3.
Solution:
To prove: cosec A + 1/ cosec A - 1=(sec A + tan A)^ 2
proof:
LHS=> cosec A + 1/ cosec A - 1
=>(cosecA+1/cosecA-1)x(cosec A+1/ cosecA+1) (by taking conjugate)
=>[(cosec A + 1)^ 2/ (cosec^ 2 A - 1)]
=>[(cosec^2+1+2cosecA)/cot^2A] (cosec^2A-1=cot^2A)
=>[(cot^2A+2+2cosecA)/(1/tan^2A)
=>[(1/tan^2A+2(1+cosecA))/tan^2A]x(tan^2A)/1
=>[{1+2tan^2A(1+cosecA)}]
=>[1+2tan^2A+2tan^2AcosecA]
=>(1+2sin^2A/cos^2A+2sin^2AcosecA/cos^2A)
=>(1+{2sin^2A}{1/cos^2A}+{2sin^2A(1/ sinA)}{1/cos^2A})
=>(1+{2sin^2A}{sec^2A}+{2sinA}{sec^2A})
=>(1+2sin^2Asec^2A+2sinAsec^2A)
=>(secA+tanA)^2=RHS
∴Hence proved
same way,you need to prove the remaining parts
Solution:
Given: (x+2) and (x-3) are factors of equation x^3+ax+b,.
To find: values of a and b (a=?, b=?)
If, (x+2) is a factor,
x+2=0
=>x=-2
By using remainder theorem we get,
p(x)=x^3+ax+b
p(-2)=(-2)^3+a(-2)+b
0 =(-8)-2a+b
0 =-8-2a+b
-2a+b=8 ....(i)
If (x-3) is a factor,
x-3=0
=>x=3
By using remainder theorem we get,
p(x)=x^3+ax+b
p(3)=(3)^3+a(3)+b
0 =27+3a+b
3a+b=-27...(ii)
Subtracting (i) from (ii) we get,
(3a+b) - (-2a+b) = (-27)-(8)
3a+b+2a-b = -27-8
5a=-35
a=-7
Substituting value of a in (ii) we get,
3a+b=-27
3(-7)+b=-27
-21+b=-27
b=-27+21
b=-6
2.
Solution:
Given: p(x)= 2x^3+9x^2+7x-6
By Using Factorization Method;
Let x=1/2
p(x)=2x^3+9x^2+7x-6
p(1/2)=2(1/2)^3+9(1/2)^2+7(1/2)-6
p(1/2)=2(1/8)+9(1/4)+(7/2)-6
p(1/2)=1/4+9/4+7/2-6
p(1/2)=10/4+14/4-24/4
p(1/2)=0......(x-1/2) x 2 =>(2x-1) is a factor
Let x=-2
p(x)=2x^3+9x^2+7x-6
p(-2)=2(-2)^3+9(-2)^2+7(-2)-6
p(-2)=2(-8)+9(4)+(-14)-6
p(-2)=-16+36-14-6
p(-2)=0.........(x+2) is a factor
Let x= -3
p(x)=2x^3+9x^2+7x-6
p(-3)=2(-3)^3+9(-3)^2+7(-3)-6
p(-3)=2(-27)+9(9)-21-6
p(-3)=-54+81-27
p(-3)=0........(x+3) is a factor
p(x)=2x^3+9x^2+7x-6=(2x-1)(x-2)(x+3)
3.
Solution:
To prove: cosec A + 1/ cosec A - 1=(sec A + tan A)^ 2
proof:
LHS=> cosec A + 1/ cosec A - 1
=>(cosecA+1/cosecA-1)x(cosec A+1/ cosecA+1) (by taking conjugate)
=>[(cosec A + 1)^ 2/ (cosec^ 2 A - 1)]
=>[(cosec^2+1+2cosecA)/cot^2A] (cosec^2A-1=cot^2A)
=>[(cot^2A+2+2cosecA)/(1/tan^2A)
=>[(1/tan^2A+2(1+cosecA))/tan^2A]x(tan^2A)/1
=>[{1+2tan^2A(1+cosecA)}]
=>[1+2tan^2A+2tan^2AcosecA]
=>(1+2sin^2A/cos^2A+2sin^2AcosecA/cos^2A)
=>(1+{2sin^2A}{1/cos^2A}+{2sin^2A(1/ sinA)}{1/cos^2A})
=>(1+{2sin^2A}{sec^2A}+{2sinA}{sec^2A})
=>(1+2sin^2Asec^2A+2sinAsec^2A)
=>(secA+tanA)^2=RHS
∴Hence proved
same way,you need to prove the remaining parts
sivaprasath:
mark as brainliest bro,sis.,.
Similar questions
World Languages,
8 months ago
Social Sciences,
8 months ago
Physics,
8 months ago
English,
1 year ago
Math,
1 year ago