Math, asked by thsh, 1 year ago

Please vSolve the question

Attachments:

Answers

Answered by king0027
0
u can solve it by partial fraction
Answered by aquialaska
0

Answer:

-3log(x-1)+4log(x-2)+\frac{-2x-1}{(x-2)^{2}}

Step-by-step explanation:

We will solve using partial fraction method,

\frac{x^{3}+2}{(x-2)^{3}(x-1)} =\frac{A}{x-1} +\frac{B}{x-2} +\frac{C}{(x-2)^2}+\frac{D}{(x-2)^3}

After solving, we get A = -3 B = 4 C=2 D = 10

So the integrand now becomes,

\frac{-3}{x-1} +∫\frac{4}{x-2} +∫\frac{2}{(x-2)^2}+∫\frac{10}{(x-2)^3}

-3log(x-1) +4log(x-2)-\frac{2}{x-2}+\frac{-5}{(x-2)^{2}} [Using partial fraction in \frac{10}{(x-2)^{3}}]

Hence, the answer is:

-3log(x-1)+4log(x-2)+\frac{-2x-1}{(x-2)^{2}}


Similar questions