Math, asked by Asmau, 10 months ago

please who can help​

Attachments:

Answers

Answered by Sudhir1188
3

ANSWER:

  • Value of the above expression is :

 =  \dfrac{ - (a + b)}{b}

GIVEN:

 =  \dfrac{a {}^{2} - b {}^{2}  }{b {}^{2}  - ab}

TO FIND:

  • Simplify the above expression.

FORMULA USED:

  • a²-b² = (a+b)(a-b)

SOLUTION:

 =  \dfrac{a {}^{2} - b {}^{2}  }{b {}^{2} - ab }  \\  \\  =  \dfrac{(a + b)(a - b)}{b(b - a)}  \\  \\   =  \dfrac{ - (a + b)(b - a)}{b(b - a)}  \\   cancelling \: (b - a) \: from \: numerator \: and \: denominator \\  \\  =  \dfrac{ - (a + b)}{b}

Value of the above expression is

 =  \dfrac{ - (a + b)}{b}

NOTE:

Some important formulas:

(a+b)² = a²+b²+2ab

(a-b)² = a²+b²-2ab

(a+b)(a-b) = a²-b²

(a+b)³ = a³+b³+3ab(a+b)

(a-b)³ = a³-b³-3ab(a-b)

a³+b³ = (a+b)(a²+b²-ab)

a³-b³ = (a-b)(a²+b²+ab)

(a+b)² = (a-b)²+4ab

(a-b)² = (a+b)²-4ab

Answered by manishntpc2003
0
-[a+b]/b is the correct answer
Similar questions