Physics, asked by user00003267, 8 months ago

please with explaination​

Attachments:

Answers

Answered by BrainlyTwinklingstar
42

\huge {\orange {\bf {\underline {\underline {Questíon}}}:-}}

The Vector sum of two vectors  \sf \vec{P} and  \sf \vec{Q} is  \sf \vec{R} .If vector  \sf \vec{Q} is reversed, the resultant becomes  \sf \vec{S} .then prove that R² + S² = 2(P² + Q²)

\Huge {\orange {\bf {\underline {\underline {Solutíon}}}:-}}

According to the question...

Let \thetabe the angle between vectors  \sf \vec{P} and  \sf \vec{Q}

Then,

 \sf {R}^{2}  =  {P}^{2}    + {Q}^{2}  + 2PQcos \theta \:  \:  \:  \:  \:  \:  \:  \: .......(1) \\

When Vector  \sf \vec{Q} is reversed, angle between the vector  \sf \vec{P} and  \sf -\vec{Q} will become 180° - \theta

Thus,

 \sf {S}^{2}  =  {P}^{2}    + {Q}^{2}  + 2PQ(180° -  \theta)  \\

 \sf {S}^{2}  =  {P}^{2}    + {Q}^{2}  + 2PQ×( - cos \theta)  \\

 \sf {S}^{2}  =  {P}^{2}    + {Q}^{2}  - 2PQ cos \theta \:  \:  \:  \:  \:  \:  \:  \: .......(2) \\

Adding the equation (1) and (2)

 \sf  {R}^{2}  + {S}^{2}  =  {P}^{2}  +  {Q}^{2}   \cancel{+ 2PQcos \theta} +  {P}^{2}  +  {Q}^{2}   \cancel{- 2PQcos \theta}

 \sf  {R}^{2}  + {S}^{2}  =  2({P}^{2}  +  {Q}^{2}   )

 \large   \sf hence \: proved....

Similar questions