Math, asked by chughlorena30, 3 months ago

please write genuine answer I will mark brainly​

Attachments:

Answers

Answered by Yugant1913
76

 \sf \:prove \: that :   \frac{1}{3 -  \sqrt{8} }  -  \frac{1}{ \sqrt{8}  -  \sqrt{7} }  +  \frac{1}{ \sqrt{7}  -  \sqrt{6} }  -  \frac{1}{ \sqrt{6} -  \sqrt{5}  }  +  \frac{1}{ \sqrt{5}  - 2}  = 5 \\

Solution

 \sf \::  \implies  \frac{1}{3 -  \sqrt{8} }  -  \frac{1}{ \sqrt{8}  -  \sqrt{7} }  +  \frac{1}{ \sqrt{7}  -  \sqrt{6} }  -  \frac{1}{ \sqrt{6} -  \sqrt{5}  }  +  \frac{1}{ \sqrt{5}  - 2}  = 5 \\

 \sf : \implies \:  \frac{3 -  \sqrt{8} }{(3 -  \sqrt{8} )(3 +  \sqrt{8} )}  -  \frac{ \sqrt{8} -  \sqrt{7}  }{( \sqrt{8} -  \sqrt{7}  )( \sqrt{8}  +  \sqrt{7}) }  +  \frac{ \sqrt{7} -  \sqrt{6}  }{( \sqrt{7} -  \sqrt{6} )( \sqrt{7}  +  \sqrt{6}  )}  +  \frac{ \sqrt{6} -  \sqrt{5}  }{( \sqrt{6}  -  \sqrt{5})( \sqrt{6}  +  \sqrt{5}  )}  +  \frac{ \sqrt{5} - 2 }{( \sqrt{5} - 2)( \sqrt{5}   + 2)}  = 5 \\

 \sf :  \implies \:  \frac{3 -  \sqrt{8} }{9 - 8}  -  \frac{ \sqrt{8} -  \sqrt{7}  }{8 - 7}  +  \frac{ \sqrt{7}  -  \sqrt{6} }{7 - 6}  -  \frac{ \sqrt{6}  -  \sqrt{5} }{6 - 5}  +  \frac{ \sqrt{5} - 2 }{5 - 4}  = 5 \\

  \sf: \implies \: 3 + 2

 \sf:  \implies5

Similar questions