Math, asked by jefinshince, 8 months ago

please write the answer

Attachments:

Answers

Answered by harleenkaur1235
0

Answer:

y5. ( 5y3 + 3y2 - 4 )

................

................

................

Answered by Anonymous
33

   \sf{\underline{\underline{ \purple{ \huge{Question:}}}}}

Divide:

 \star \:  \sf{ \blue{3 {y}^{7}  - 4 {y}^{5}  + 5 {y}^{4}  \: by \:  {y}^{4} }}

 \\ \\ \\ \sf{\underline{\underline{ \purple{ \huge{Answer:}}}}} \\ \\

 \\ \star \:  \sf{ \blue{3 {y}^{7}  - 4 {y}^{5}  + 5 {y}^{4}  \: by \:  {y}^{4} }}

ㅤㅤㅤㅤㅤ

  • Here, we are dividing a polynomial ( 3y⁷ - 4y⁵ + 5y⁴ ) by a monomial ( y⁴ ). Divide each term of the polynomial by the monomial and then simplify.

 \\  \\  \implies\sf \dfrac{3 {y}^{7}  - 4 {y}^{5}  + 5 {y}^{4}}{ {y}^{4}}

ㅤㅤㅤㅤㅤ

Divide each term of the polynomial by the monomial, we have

 \implies{ \sf{ \dfrac{3 {y}^{7} }{ {y}^{4} }  -  \dfrac{4 {y}^{5} }{ {y}^{4} }  +  \dfrac{5 {y}^{4} }{ {y}^{4} }} }

 \\  \\ \implies \sf (3 {y})^{7 - 4}  - (4 {y})^{5 - 4}  +( 5 {y})^{4 - 4}

\\  \\ \implies \sf3 {y}^{3}  - 4y + 5 {y}^{0}  \\  \\

Any number raise to power ⁰ is 1

 \implies \sf3 {y}^{3}  - 4y + 5  \times 1

 \\  \\ \implies \sf3 {y}^{3}  - 4y + 5   \\  \\

 \sf{ \blue{ \therefore Final \: Answer = \green{ \underline{ \boxed{ \sf{3 {y}^{3}  - 4y + 5 }}}}}}

 \\ \\ \\ \sf{\underline{\underline{ \purple{ \huge{More:}}}}} \\ \\

ㅤㅤㅤㅤㅤ

  \sf{x}^{m}  \div  {x}^{n}  =  \dfrac{ {x}^{m} }{ {x}^{n} }  =  {x}^{m - n}

  • If m > n

 \\ \sf{x}^{m}  \div  {x}^{n}  =  \dfrac{ {x}^{m} }{ {x}^{n} }  =   \dfrac{1}{ {x}^{m - n} }

  • if n > m

══════════════════════

Similar questions