Math, asked by Anonymous, 4 months ago

please yar help krooooooo spamming =10 answer report... ​

Attachments:

Answers

Answered by Steph0303
19

Answer:

  • x = 3

Steps:

Consider ΔADE and ΔABC

It is given that DE || BC

Therefore,

  • ∠ ADE = ∠ ABC
  • ∠ AED = ∠ ACB

Hence by AA Similarity, we can say that: Δ ADE ~ Δ ABC

Hence by Basic Proportionality Theorem, we can say that:

⇒ AD/AB = AE/AC    ...(i)

According to the question,

  • AD = x
  • AB = AD + DB → x + x + 1 → ( 2x + 1 )
  • AE = x + 3
  • AC = AE + EC → x + 3 + x + 5 → ( 2x + 8 )

Substituting it in (i) we get:

\implies \dfrac{x}{2x + 1} = \dfrac{x + 3}{2x+8}

Cross multiplying we get:

⇒ x ( 2x + 8 ) = ( x + 3 ) ( 2x + 1 )

⇒ ( 2x² + 8x ) = ( 2x² + 6x + x + 3 )

2x² gets cancelled on both sides & we get,

⇒ 8x = 7x + 3

⇒ 8x - 7x = 3

x = 3

Hence the value of 'x' is 3.

Answered by Anonymous
30

सवाल

{\mapsto} यदि ∆ ABC में DE || BC हो तो x ki कीमत ज्ञात कीजिए । चित्र लगाव में दिया गया है ( Given in attachment )

दिया गया है

{\mapsto} ( लगाव देखना अनिवार्य है )

∆ ABC में DE || BC है ।

ज्ञात करना है

{\mapsto} x की कीमत ।

हल

{\mapsto} x की कीमत है = 3

समस्त हल

\rule{95}{2}

~

∆ADE = ∆ABC

∆ ABC में DE || BC है

∠ ADE = ∠ ABC

∠ AED = ∠ ACB

\rule{95}{2}

~ आनुपातिक निष्क्रियता का उपयोग करके हमें मूल्यों को रखना होगा !

( Now we have to use Proportional theorm and have to put values ! )

{\bold{\sf{\mapsto \dfrac{AD}{AB} = \dfrac{AE}{AC}}}} Equation 1

\rule{95}{2}

~ सवाल के अनुसार –

{\bullet} AD = x

{\bullet} AE = x + 3

{\bullet} AB = AD + DB {\longrightarrow} x + x + 1 = 2x + 1

{\bullet} AC = AE + EC {\longrightarrow} x + 3 + x + 5 {\longrightarrow} ( 2x + 8 )

\rule{95}{2}

{\bold{\sf{\mapsto \dfrac{x}{2x+1} = \dfrac{x+3}{2x+8}}}}

{\mapsto} x(2x+8) = 3x+3(2x-1)

{\mapsto} 2x²+8x = 2x²+6x+x+3

{\mapsto} 8x = 6x + x + 3

{\mapsto} 8x = 7x + 3

{\mapsto} 8x - 7x = 3

{\mapsto} 1x = 3

{\mapsto} x = 3

\rule{95}{2}

Similar questions