Math, asked by ItsMissKillerxd, 3 months ago

please yar solve it
kisi ko ata ha kaya???

Attachments:

Answers

Answered by BrainlicaLDoll
2

GIVEN:

  • \sf{x = \dfrac{5}{9}}

  • \sf{y = \dfrac{9}{11}}

TO VERIFY:

  • \sf{|x \times y|  =  |x|  \times  |y|}

SOLUTION:

First, we will fine | x × y |

\sf\mapsto{\mid \dfrac{5}{{9}} \times \dfrac{{9}}{11}|}

\sf\mapsto{| \dfrac{5}{\cancel{9}} \times \dfrac{\cancel{9}}{11}|}

\sf\mapsto{ |\dfrac{5}{11}|=\dfrac{5}{11}-------(i)}

Second, we will find |x| × |y|

\sf\mapsto{| \dfrac{5}{{9}}| \times |\dfrac{{9}}{11}|}

\sf\mapsto{| \dfrac{5}{\cancel{9}}| \times |\dfrac{\cancel{9}}{11}|}

\sf\mapsto{|\dfrac{5}{11}|=\dfrac{5}{11}-------(ii)}

from (i) and (ii), it is proved that \sf{|x \times y|  =  |x|  \times  |y|}

ANSWER:

So, from above solution it is proved that \sf{|x \times y|  =  |x|  \times  |y|}.

@BrainlicaLDoll

Similar questions