pleaseans trignometry class 12th
Answers
ur question
[{singma} from r=1 to r=8]tan(rA).tan(r+1)A,where A=36°
Solution:
=>Let us first consider,the value of Tan{(r+1)A-tanrA}
Now,using the identity Tan(A-B)=(TanA-TanB)/1+TanA.TanB,,we get
=>Tan{(r+1)A-rA}={Tan(r+1)A-TanrA}/{1+tan(r+1)A.tanrA)}......
=>Tan{rA+A-rA}={Tan(r+1)A-TanrA}/{1+tan(r+1)A.TanrA}
=>Tan(r+1)A.TanrA={Tan(r+1)A-TanrA}/TanA -1}
Now, applying,singma on both side we get we get
[{singma} from r=1 to r=8]tan(rA).tan(r+1)A,=£from r=1 to 8{Tan(r+1)A-TanrA}/TanA -1}
=>1/TanA[sigma from 1 to 8]tan(r+1)A-tanrA}-{sigma 1 to 8}1
=>put r=1 to 8
=>1/TanA{tan2A-TanA+Tan3A-Tan2A+Tan4A-Tan3A+Tan5A-tan4A+Tan6A-tan5A+tan7A-tan6A+tan7A-tan8A+tan9A-tan8A}-8
now,we can clearly see
every terms ,will be cancelled out ,we get
=> 1/tanA×(Tan9A-TanA)-8
now,
now,we know
A=36=π/5
Tan9A=tan(2π-π/5)
this will lie in the fourth coordinates
so,
tan(2π-π/5)=-tanπ/5=-tanA
putting this value of tan9A we get
=>1/tanA(-tanA-tanA-8)
=>(-2tanA)/tanA-8
=>-2-8=-10
{hope it helps you}