Math, asked by yashwarke77, 3 months ago

pleasee anwere friends ​

Attachments:

Answers

Answered by dverma040
0

Answer:

1/36

Step-by-step explanation:

this is the answer or

Attachments:
Answered by Seafairy
67

Given :

\displaystyle{\sf \Bigg[\Big(\frac{-1}{3}\Big)^{-2}\Bigg]^{-2} \times \Bigg[\Big(\frac{2}{3}\Big)^{2}\Bigg]^{-2} \div \Bigg[\Big(\frac{3}{2}\Big)^{-1}\Bigg]^{-2}}

Explanation :

A positive exponent tells us how many times to multiply a base number, and a negative exponent tells us how many times to divide a base number. We can rewrite negative exponents like x⁻ⁿ as \sf \frac{1}{x^n} For example,

\sf{2^{-4}= \frac{1}{2^4}=\frac{1}{16}}

Solution :

\rightarrow {\displaystyle{\sf \Bigg[\Big(\frac{-1}{3}\Big)^{-2}\Bigg]^{-2} \times \Bigg[\Big(\frac{2}{3}\Big)^{2}\Bigg]^{-2} \div \Bigg[\Big(\frac{3}{2}\Big)^{-1}\Bigg]^{-2}}}

\rightarrow \displaystyle{\sf \dfrac{\Big[\frac{-1}{3}\Big]^{-2 \times-2} \times \Big[\frac{2}{3}\Big]^{2 \times-2}}{\Big[\frac{3}{2}\Big]^{-1 \times -2}}}

\rightarrow \displaystyle{\sf \frac{\Big[\frac{-1}{3}\Big]^{4} \times \Big[\frac{2}{3}\Big]^{-4}}{\Big[\frac{3}{2}\Big]^{2}}}

\rightarrow \displaystyle{\sf \frac{\Big(\frac{(-1)^4}{(3)^4}\Big) \times \Big(\frac{(3)^4}{(2)^4}\Big)}{ \Big(\frac{(3)^2}{(2)^2}\Big)}}

\rightarrow \displaystyle{\sf \frac{\Big(\frac{1}{81}\Big) \times \Big(\frac{81}{16}\Big)}{\Big(\frac{9}{4}\Big)}}\implies \sf \displaystyle{\sf \frac{\Big(\frac{1}{16}\Big)}{\Big(\frac{4}{9}\Big)} }

\displaystyle {\rightarrow \Big(\frac{1}{16}\Big) \times \Big(\frac{4}{9}\Big)\implies \sf \frac{1}{36}}

Required Answer :

Simplified form of \displaystyle{\sf \Bigg[\Big(\frac{-1}{3}\Big)^{-2}\Bigg]^{-2} \times \Bigg[\Big(\frac{2}{3}\Big)^{2}\Bigg]^{-2} \div \Bigg[\Big(\frac{3}{2}\Big)^{-1}\Bigg]^{-2}} is \displaystyle  {\sf \frac{1}{36}}

Similar questions