Math, asked by dipesh8051, 6 months ago

Pleasensolve this proving question​

Attachments:

Answers

Answered by kaushik05
3

To prove :

 \star \:  \frac{ \tan( \frac{\pi}{4}   + x)}{ \tan( \frac{\pi}{4} - x) }  =  {( \frac{1 +  \tan \: x}{ 1 -  \tan \: x})  }^{2}  \\

Solution :

LHS :

 \implies \:  \frac{ \tan \: ( \frac{\pi}{4} + x) }{ \tan \: ( \frac{\pi}{4} - x) }  \\  \\  \implies \:  \frac{ \frac{ \tan \:  \frac{\pi}{4} +  \tan \: x }{1 -  \tan \:  \frac{\pi}{4} \tan \: x } }{ \frac{ \tan  \:  \frac{\pi}{4} -  \tan \: x }{1 +  \tan \:  \frac{\pi}{4}  \tan \: x \: } }  \\  \\  \implies \:  \frac{ \frac{1 +  \tan \: x}{1 -  \tan \: x} }{ \frac{1 -  \tan \: x}{1 +  \tan \: x} }  \\  \\  \implies \:  \frac{1 +  \tan \: x}{1 -  \tan \: x}  \times  \frac{1 + \tan \: x}{ 1 -  \tan \: x \: }  \\  \\  \implies \:  \frac{ {(1 +   \tan \: x)}^{2} }{ {(1 -  \tan \: x)}^{2} }  \\  \\  \implies \:   {( \frac{1 +  \tan \: x}{1 -  \tan \: x} )}^{2}  \\

LHS = RHS

Proved :

Formula :

 \star \bold{\tan \: (x + y) =  \frac{ \tan \: x +  \tan \: y}{1 -  \tan \: x \tan \: y}  }\\  \\  \star  \: \bold{ \tan(x - y) =  \frac{ \tan \: x -  \tan \: y}{1 +  \tan \: x \tan \: y \: } }

Similar questions