Math, asked by Happiness07, 3 days ago

Pleases solve the case study.​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

Speed of the train is v km per hour.

Let assume that fuel cost be Rs x per hour.

Further it is given that, Cost of fuel per hour is directly proportional to square of the speed in km per hour.

\rm\implies \:x \:  \alpha  \:  {v}^{2}  \\

\rm\implies \:x \:  = k  \:  {v}^{2}  \\

Now, given that x = 48 and v = 16, so on substituting the values, we get

\rm \: 48 = k {(16)}^{2}  \\

\rm\implies \:k =  \frac{48}{16 \times 16}  =  \frac{3}{16}   \\

So, option (d) is correct.

Now, Further given that Fixed charges to run the train per hour is ₹ 1200

So, Total cost of running the train per hour is

\rm \: Cost \: per \: hour, \: c \:  =  \: 1200 +  {kv}^{2}  \\

Now, its a cost per hour to travel v km.

So, cost to travel per km is

\rm \: Cost \: per \: km\:  \:  =  \:  \frac{1200}{v}  + kv  \\

Now,

\rm \: Cost \: for \: 500 \: km,\:x  \:  =  \:  \frac{600000}{v}  + 500kv  \\

On substituting the value of k, we get

\rm \: Cost \: for \: 500 \: km,\:x  \:  =  \:  \frac{600000}{v}  + 500 \times  \frac{3}{16}  \times v  \\

\rm \: Cost \: for \: 500 \: km,\:x  \:  =  \:  \frac{600000}{v}  + 125 \times  \frac{3}{4}  \times v  \\

\rm \: Cost \: for \: 500 \: km,\:x  \:  =  \:  \frac{600000}{v}  + \frac{375v}{4}   \\

So, option b is correct.

Now, we have

\rm \: Cost \: per \: km,\: y \:  =  \:  \frac{1200}{v}  + kv  \\

\rm \: Cost \: per \: km,\: y \:  =  \:  \frac{1200}{v}  +  \frac{3}{16} v  \\

On differentiating both sides w. r. t. v, we get

\rm \: \frac{d}{dv} \:y  \:  =  \:  \frac{d}{dv}\bigg(\frac{1200}{v}  + \frac{3v}{16}\bigg)   \\

\rm \: \frac{dy}{dv} =  -  \frac{1200}{ {v}^{2} } +  \frac{3}{16}  \\

For maxima or minima,

\rm \: \frac{dy}{dv} = 0\\

\rm \:  -  \frac{1200}{ {v}^{2} } +  \frac{3}{16}  = 0 \\

\rm \:  -  \frac{1200}{ {v}^{2} } =  -  \:   \frac{3}{16}  \\

\rm \:  \frac{400}{ {v}^{2} } =  \:   \frac{1}{16}  \\

\rm \:  {v}^{2}  = 6400 \\

\rm\implies \:v = 80 \: km \: per \: hour \\

So, option (c) is correct

Now, the fuel cost to travel 500 km for the most economical speed is

\rm \: =  \: 500 \times  \frac{3v}{16}  \\

\rm \: =  \: 500 \times  \frac{3}{16} \times 80  \\

\rm \: =  \: 500 \times 15  \\

\rm \: =  \: 7500  \\

So, option (c) is correct.

Now, Total cost of the train to travel 500 km with most economical speed is

\rm \: Cost \: for \: 500 \: km,\:x  \:  =  \:  \frac{600000}{v}  + 500kv  \\

\rm \: Cost \: for \: 500 \: km,\:x  \:  =  \:  \frac{600000}{80}  + 500 \times  \frac{3}{16} \times 80\\

\rm \: Cost \: for \: 500 \: km,\:x  \:  =  \:  15000\\

So, option (d) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by XxitzZBrainlyStarxX
4

Question:-

CASE STUDY

The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹48 per hour at speed 16km per hour and the fixed charges to run the train amount to ₹1,200 per hour. Assume the speed of the train as v km/h.

Based on the given information, answer the following questions.

46. Given that the fuel cost per hour is k times the square of the speed the train generates in km/h, the value of k is:

Options:

(a) 16/3. b) 1/3. c) 3. b) 3/16.

________________________________________

47. If the train has travelled a distance of 500km, then the total cost of running the train is given by function:

Options:

(a) 15/16 v + 6,00,000/v. (b) 375/4 v + 6,00,000/v.

(c) 5/16 v² + 1,50,000/v (d) 3/16 v + 6,000/v.

________________________________________

48. The most economical speed to run the train is:

Options:

(a) 18km/h. (b) 5km/h. (c) 80km/h. (d) 40km/h.

________________________________________

49. The fuel cost for the train to travel 500km at the most Economical speed is:

Options:

(a) ₹3,750. (b) ₹750. (c) ₹7,500. (d) ₹75,000.

_________________________________________

50. The total cost of the train to travel 500km at the most Economical speed is:

Options:

(a) ₹3,750. (b) 75,000. (c) ₹7,500. (d) ₹ 15,000.

_________________________________________

Given:-

  • Speed of the train is v km/h.

Solution:-

46. Fuel cost = k (speed)²

48 = k . 16²

{ \boxed{ \sf \large \color{red}⇒ k =  \frac{3}{16} .}} \\ { \boxed{ \sf \large \blue{Option(d)  \: is \:  correct. }}}

_________________________________________

47.

 \sf \large Total \:  cost \:  of \:  running \:  train \:  (Let, C) = \frac{3}{16}  v {}^{2} t + 1200t.

 \sf \large Distance \:  covered = 500km \:  \\  \sf \large ⇒time =  \frac{500}{v} hrs

 \sf \large Total  \: cost \:  of \:  running \:  train \:  500km =  \frac{3}{16} v {}^{2} ( \frac{500}{v} ) + 1200( \frac{500}{v} )

{ \boxed{ \sf \large \red{⇒C =  \frac{375}{4}  v +  \frac{6,00,000}{v} .}}}  \\  { \boxed{ \sf \large  \blue{Option(b)  \: is  \: correct. }}}

________________________________________

48.

 \sf \large  \frac{dc}{dv} =  \frac{375}{4}  -  \frac{6,00,000}{v}

 \sf \large Let,  \frac{dc}{dv}  = 0.

{ \boxed{ \sf \large  \red{⇒v = 80 \frac{km}{h}. }}} \\  { \boxed{ \sf \large \blue{ Option(c)  \: is \:  correct. }}}

________________________________________

49.

 \sf \large Fuel \:  cost \:  for \:  running \:  500km =  \frac{3}{16} v =  \frac{375}{4}  \times 80 = 7,500.

{ \boxed{ \sf \large \red{  =₹7,500. }}} \\  { \boxed{ \sf \large \blue{ Option(c)  \: is  \: correct. }}}

________________________________________

50.

 \sf \large The \:  total  \: cost \:  for \:  running \:  500km =  \frac{375}{4} v +  \frac{6,00,000}{v}  =  \frac{375 \times 80}{4}  +  \frac{6,00,000}{80}  = 15,000

{ \boxed{ \sf \large  \red{= ₹15,000.}}} \\ { \boxed{ \sf \large \blue{Option(d)  \: is \:  correct. }}}

Answers:-

46. Option(d) 3/16.

47. Option(b) 375/4 v + 6,00,000/v.

48. Option(c) 80km/h.

49. Option(c) 7,500.

50. Option(d) 15,000.

Hope you have satisfied.

Similar questions