pleasr solve it with picture.... the circuled nos...f2 & f3
Attachments:
Answers
Answered by
2
F-2) 3x^
Srijan3003:
PLEASE DO F3....
Answered by
1
Heya User,
--> 3x² - 17x + 10 = 0
--> 3x² - 15x - 2x + 10 = 0
--> ( 3x - 2 )( x - 5 ) = 0
--> x = 5 ; 2/3 ||
--> Now, we take the polynomial function --> p(x) = x² - 5x + λ
--> p(5) = 0 => λ = -25 + 25 = 0 || λ = 0 ;
--> p( 2/3 ) = 0 => λ = 5 ( 2/3 ) - ( 4/9 ) = ( 30 - 4 ) / 9 = 26 / 9
---> λ is either 26/9 or 0 => The sum of possible values = 26/9 ...
_____________________________________________________________
Second Qn. -->
--> 2a²x² - 2abx + b² = 0
--> Discriminant = 4a²b² - 4(2a²)(b²) = 4a²b² - 8a²b² = -4a²b²
However, since a, b are real --> 4a²b² ≥ 0 --> -4a²b² ≤ 0
=> Discriminant ≤ 0 --> The roots are imaginary ....
--> p²x² + 2pqx + q² = 0
=> ( px + q )² = 0
=> x = -q / p <----- The only root is -q/p --> real
=> Both the eqn.s have no common root ^_^
--> 3x² - 17x + 10 = 0
--> 3x² - 15x - 2x + 10 = 0
--> ( 3x - 2 )( x - 5 ) = 0
--> x = 5 ; 2/3 ||
--> Now, we take the polynomial function --> p(x) = x² - 5x + λ
--> p(5) = 0 => λ = -25 + 25 = 0 || λ = 0 ;
--> p( 2/3 ) = 0 => λ = 5 ( 2/3 ) - ( 4/9 ) = ( 30 - 4 ) / 9 = 26 / 9
---> λ is either 26/9 or 0 => The sum of possible values = 26/9 ...
_____________________________________________________________
Second Qn. -->
--> 2a²x² - 2abx + b² = 0
--> Discriminant = 4a²b² - 4(2a²)(b²) = 4a²b² - 8a²b² = -4a²b²
However, since a, b are real --> 4a²b² ≥ 0 --> -4a²b² ≤ 0
=> Discriminant ≤ 0 --> The roots are imaginary ....
--> p²x² + 2pqx + q² = 0
=> ( px + q )² = 0
=> x = -q / p <----- The only root is -q/p --> real
=> Both the eqn.s have no common root ^_^
Similar questions